Derivation of Second Order Partial Differential Equation Indicating Wave and Heat Equation through the Use of the Navier Stoke’s Equation for Unsteady and Incompressible Flow
##plugins.themes.bootstrap3.article.main##
In this paper, we have tried to approach the concepts of two-dimensional wave equation and one dimensional heat equation through the means of the Navier Stoke’s equation for unsteady and incompressible flow. Our pursuit to do so has been supported with ample justifications and analytic discussions. The strong relation shared by the fluid dynamics, wave mechanics and heat flow has been brought to light through our attempts.
References
-
G. K. Batchelor, Fluid Dynamics, Cambridge University Press, 1983, pp 143
Google Scholar
1
-
D. J. Triton, (Van Nostrand Reinhold (UK) Co. Ltd), Physical Fluid dynamics,
Google Scholar
2
-
Joseph H. Spurk, Fluid Mechanics, p101-102, Germany.
Google Scholar
3
-
Snneddon, Partial Differential equations.
Google Scholar
4
-
Piaggio, H. T. H, Differential equations.
Google Scholar
5