Exploring the Infinitude of Primes and Related Conjectures
Article Main Content
This paper presents several classical and modern proofs demonstrating the infinitude of prime numbers. The discussion includes Euclid’s original argument as well as alternative approaches including analytic, topological, and combinatorial proofs. In addition, this paper discusses two open problems in number theory: the infinitude of Mersenne primes and the Twin Prime Conjecture. The aim is to provide an overview of both established results and ongoing challenges in the study of prime numbers.
References
-
Furstenberg H. On the infinitude of primes. American Mathem Mont. 1955;62(5):353.
Google Scholar
1
-
Graham RL, Rothschild BL. A short proof of van der Waerden’s theorem on arithmetic progressions. Proc American Mathem Soc. 1974;42(2):385–6.
Google Scholar
2
-
Alpoge L. van der Waerden and the primes. American Mathem Mont. 2015;122(8):784–5.
Google Scholar
3
-
Lehmer DH. An extended theory of Lucas’ functions. Ann Mathemat. 1930;31(3):419–48.
Google Scholar
4
-
Lucas E. Théorie des fonctions numériques simplement périodiques. American J Mathem. 1878;1(2):289–321.
Google Scholar
5
-
Great Internet Mersenne Prime Search (GIMPS). Mersenne prime number discovery-2136279841−1 is Prime! [Internet]. 2024 [cited 2025 Mar 20]. Available from: https://www.mersenne.org/primes/?press=M136279841.
Google Scholar
6
-
Gillies DB. Three new Mersenne primes and a statistical theory. Mathemat Computat. 1964;18(85):93–7.
Google Scholar
7
-
Pomerance C. Recent developments in primality testing. Mathemat Intellig. 1981;3(3):97–105.
Google Scholar
8
-
Wagstaff SS. Divisors of Mersenne numbers. Mathemat computat. 1983;40(161):385–97.
Google Scholar
9
-
Hardy GH, Littlewood JE. Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes. Acta Mathematica. 1923;44(1):1–70.
Google Scholar
10
-
Goldston DA, Pintz J, Yildirim CY. Primes in tuples I. Annf Mathemat. 2009;170(2):819–62.
Google Scholar
11
-
Zhang Y. Bounded gaps between primes. Ann Mathemat. 2014;179(3):1121–74.
Google Scholar
12
-
Maynard J. Small gaps between primes. Ann mathemat. 2015;181(1):383–413.
Google Scholar
13
-
Elliott PD, Halberstam H. A conjecture in prime number theory. Symposia mathematica. 1968;4:59–72.
Google Scholar
14