Parametric Sensitivity Analysis of A Compressible Multiphase Flow Model in Porous Medium: Application to the Tsimiroro Madagascar Oil Reservoir
##plugins.themes.bootstrap3.article.main##
Modeling and numerical methods are two very important fields in physics and engineering sciences. In fluid mechanics, they allow us to study various complex problems and to make predictions of complex phenomena. However, in some cases like the field of petroleum engineering, many parameters like absolute permeability, relative permeability, porosity, capillary pressures, etc. are difficult to measure and / or estimate with certainty. The parametric sensitivity analysis of models provides an overview of the most influential parameters of a model and thus enables the model to be optimized. The study carried out in this work goes in this direction and has made it possible to identify the most influential parameters. The results obtained show that the most influential parameters of the model are the geometric characteristics of the reservoir, porosity and permeability, as well as the injection pressure in the wells.
References
-
Saltelli A, Andres T, Campolongo F, Cariboni J, Gatelli D, Saissana M, Tarrantola S. Global sensitivity analysis, the Primer,Wiley; 2008
Google Scholar
1
-
Liu Q, Homma T. Sensitivity analysis of a passive decay heat removal system under a post-loss of coolant accident condition, Journal of Nuclear Science and Technology. 2012; 49(9): 897-909.
Google Scholar
2
-
Henkel T, Wilson H, Krug W. Global sensitivity analysis of nonlinear mathematical models – an implementation of two complementing variance-based algorithms, Proceedings of the 2012 Winter Simulation Conference. 2012.
Google Scholar
3
-
Rakotondramiarana HT, Andriamamonjy L. Matlab automation algorithm for performing global sensitivity analysis of complex system models with a derived FAST method. Journal of Computations & Modelling. 2013; 3(3): 17-56.
Google Scholar
4
-
Mara TA. Contribution à la validation d'un logiciel de simulation du comportement thermo-aéraulique du bâtiment: Proposition de nouveaux outils d'aide à la validation. Ph.D. thesis. University of Reunion; 2000. French.
Google Scholar
5
-
Rakotondramiarana HT, Etude théorique du séchage thermique et de la digestion anaérobie des boues des stations d'épuration - Mise au point des dispositifs pilotes de laboratoire pour la caractérisation expérimentale liée au séchage et à la méthanisation des boues. Ph.D. thesis. University of Antananarivo; 2004. French.
Google Scholar
6
-
Marchand E, Clément F, Roberts JE, Pépin G. Deterministic sensitivity analysis for a model for flow in porous media. Advances in Water Resources. 2008; 31(8): 1025-1037.
Google Scholar
7
-
Hashemi L, Blunt M J, Hajibeygi H. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Scientific Reports. 2021.
Google Scholar
8
-
Sobieski W, Trykozko A. sensitivity Aspects of Forchheimer’s Approximation. Transp Porous Med. 2011, 89: 155-164.
Google Scholar
9
-
Ghaebi H, Bahadorinejad M, Saidi MH., Sensitivity analysis of fluid flow in a confined aquifer using numerical simulation. Journal of Applied Research in Water and Wastewater. 2016; 3 (1): 201-208.
Google Scholar
10
-
Sun N, Sun NZ, Elimelech M, Ryan JN, Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resources Research. 2001; 37(2); 209-222,
Google Scholar
11
-
Goh S. Morris method with improved sampling strategy and Sobol’ Variance based method, as validation tool on Numerical Model of Richard’s Equation. Journal of Geography and Cartography. 2021; 4(1).
Google Scholar
12
-
Kabala ZJ, Milly PCD. Sensitivity Analysis of Flow in Unsaturated Heterogeneous Porous Media: Theory, Numerical Model, and Its Verification. Water Resources Research. 1990; 26(4); 593-610.
Google Scholar
13
-
Sidiropoulos E, Tzimopoulos C. Sensitivity analysis of a coupled heat and mass transfer model in unsaturated porous media. J. Hydrol. 1983; 64: 281-298.
Google Scholar
14
-
Giap G E., Noborio K, Ali A. Global sensitivity analysis, inverse modellinon soil water infiltration. ARPN Journal of Engineering and Applied Sciences. 2018;13(12).
Google Scholar
15
-
Gatel L, Lauvernet C, Carluer N., Weill S, Claudio P. Sobol Global Sensitivity Analysis of a Coupled Surface/Subsurface Water Flow and Reactive Solute Transfer Model on a Real Hillslope. Water. 2020; 12(121).
Google Scholar
16
-
Liu Y, Gupta HV, Sorooshian S, Bastidas LA, Shuttleworth WJ. Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model. J. Geophys. Res. Atmos. 2004: 109.
Google Scholar
17
-
Beven K. A manifesto for the equifinality thesis. J. Hydrol. 2006; 320: 18–36.
Google Scholar
18
-
Werkhoven KV, Wagener T, Reed P, Tang Y. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resour. Res. 2008: 44.
Google Scholar
19
-
Gan Y, Duan Q, Gong W, Tong C, Sun Y, Chu W, et al. A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environ. Model. Softw. 2014; 51: 269–285.
Google Scholar
20
-
Song X, Zhang J, Zhan, C, Xuan Y, Ye M, Xu C, Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015; 523: 739–757.
Google Scholar
21
-
Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson D.B, Wagener T, Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016; 79: 214–232.
Google Scholar
22
-
Dai H., Chen X, Ye M, Song X, Zachara JM. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling. Water Resour. Res. 2017; 53: 4327–4343.
Google Scholar
23
-
Fajraoui N, Ramasomanana F, Younes A, Alex M T, Ackerer P, Guadagnini A. Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory-scale porous media, Water Resources Research. 2011; 47: w02521.
Google Scholar
24
-
Fajraoui N, Mara TA, Younes A, Bouhlila R. Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion. Water Air Soil Pollut. 2012; 223: 4183–4197.
Google Scholar
25
-
Younes A, Mara TA, Fajraoui N, Lehmann F, Belfort B, Beydoun H, Use of Global Sensitvity Analysis to Help Assess Unsaturated Soil Hydraulic Parameters. Vadose Zone J. 2013.
Google Scholar
26
-
Ahamadi ME, Rakotondramiarana HT, Rakotonindrainy. Modeling and Simulation of Compressible Three-Phase Flows in an Oil Reservoir: Case Study of Tsimiroro Madagascar. American Journal of Fluid Dynamics. 2014; 4(4): 181-193.
Google Scholar
27
-
Ahamadi ME. Modélisation et mise au point d’un code multiphasique pour les écoulements multiphasiques en milieux poreux: Application au gisement pétrolier de Tsimiroro. Ph.D. Thesis; Université d’Antananarivo, 2014. French.
Google Scholar
28
-
Beheshti R, Sukthankar G. Improving Markov Chain Monte Carlo Estimation with Agent-Based Models, University of Central Florida. [Internet] Available from: http://ial.eecs.ucf.edu/pdf/Sukthankar-SBP2013.pdf
Google Scholar
29
-
Järvinen H, Räisänen P, Laine M, Tamminen J, Ilin A, Oja E, et al. Estimation of ECHAM5 climate model closure parameters with adaptive MCMC. Atmos. Chem. Phys. 2010; 10: 9993–10002,
Google Scholar
30
-
Bilal N. Implementation of Sobol’s Method of Global Sensitivity Analysis to a Compressor Simulation Model. International Compressor Engineering Conference. 2014: 2385.
Google Scholar
31