Parametric Sensitivity Analysis of A Compressible Multiphase Flow Model in Porous Medium: Application to the Tsimiroro Madagascar Oil Reservoir

##plugins.themes.bootstrap3.article.main##

  •   Malik E. Ahamadi

  •   Hery T. Rakotondramiarana

  •   Randriamanantany Z. Arivelo

Abstract

Modeling and numerical methods are two very important fields in physics and engineering sciences. In fluid mechanics, they allow us to study various complex problems and to make predictions of complex phenomena. However, in some cases like the field of petroleum engineering, many parameters like absolute permeability, relative permeability, porosity, capillary pressures, etc. are difficult to measure and / or estimate with certainty. The parametric sensitivity analysis of models provides an overview of the most influential parameters of a model and thus enables the model to be optimized. The study carried out in this work goes in this direction and has made it possible to identify the most influential parameters. The results obtained show that the most influential parameters of the model are the geometric characteristics of the reservoir, porosity and permeability, as well as the injection pressure in the wells.

Keywords: Analysis of variance, multiphase flow, oil reservoir, porous media, sensitivity analysis

References

Saltelli A, Andres T, Campolongo F, Cariboni J, Gatelli D, Saissana M, Tarrantola S. Global sensitivity analysis, the Primer,Wiley; 2008

Liu Q, Homma T. Sensitivity analysis of a passive decay heat removal system under a post-loss of coolant accident condition, Journal of Nuclear Science and Technology. 2012; 49(9): 897-909.

Henkel T, Wilson H, Krug W. Global sensitivity analysis of nonlinear mathematical models – an implementation of two complementing variance-based algorithms, Proceedings of the 2012 Winter Simulation Conference. 2012.

Rakotondramiarana HT, Andriamamonjy L. Matlab automation algorithm for performing global sensitivity analysis of complex system models with a derived FAST method. Journal of Computations & Modelling. 2013; 3(3): 17-56.

Mara TA. Contribution à la validation d'un logiciel de simulation du comportement thermo-aéraulique du bâtiment: Proposition de nouveaux outils d'aide à la validation. Ph.D. thesis. University of Reunion; 2000. French.

Rakotondramiarana HT, Etude théorique du séchage thermique et de la digestion anaérobie des boues des stations d'épuration - Mise au point des dispositifs pilotes de laboratoire pour la caractérisation expérimentale liée au séchage et à la méthanisation des boues. Ph.D. thesis. University of Antananarivo; 2004. French.

Marchand E, Clément F, Roberts JE, Pépin G. Deterministic sensitivity analysis for a model for flow in porous media. Advances in Water Resources. 2008; 31(8): 1025-1037.

Hashemi L, Blunt M J, Hajibeygi H. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Scientific Reports. 2021.

Sobieski W, Trykozko A. sensitivity Aspects of Forchheimer’s Approximation. Transp Porous Med. 2011, 89: 155-164.

Ghaebi H, Bahadorinejad M, Saidi MH., Sensitivity analysis of fluid flow in a confined aquifer using numerical simulation. Journal of Applied Research in Water and Wastewater. 2016; 3 (1): 201-208.

Sun N, Sun NZ, Elimelech M, Ryan JN, Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resources Research. 2001; 37(2); 209-222,

Goh S. Morris method with improved sampling strategy and Sobol’ Variance based method, as validation tool on Numerical Model of Richard’s Equation. Journal of Geography and Cartography. 2021; 4(1).

Kabala ZJ, Milly PCD. Sensitivity Analysis of Flow in Unsaturated Heterogeneous Porous Media: Theory, Numerical Model, and Its Verification. Water Resources Research. 1990; 26(4); 593-610.

Sidiropoulos E, Tzimopoulos C. Sensitivity analysis of a coupled heat and mass transfer model in unsaturated porous media. J. Hydrol. 1983; 64: 281-298.

Giap G E., Noborio K, Ali A. Global sensitivity analysis, inverse modellinon soil water infiltration. ARPN Journal of Engineering and Applied Sciences. 2018;13(12).

Gatel L, Lauvernet C, Carluer N., Weill S, Claudio P. Sobol Global Sensitivity Analysis of a Coupled Surface/Subsurface Water Flow and Reactive Solute Transfer Model on a Real Hillslope. Water. 2020; 12(121).

Liu Y, Gupta HV, Sorooshian S, Bastidas LA, Shuttleworth WJ. Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model. J. Geophys. Res. Atmos. 2004: 109.

Beven K. A manifesto for the equifinality thesis. J. Hydrol. 2006; 320: 18–36.

Werkhoven KV, Wagener T, Reed P, Tang Y. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resour. Res. 2008: 44.

Gan Y, Duan Q, Gong W, Tong C, Sun Y, Chu W, et al. A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environ. Model. Softw. 2014; 51: 269–285.

Song X, Zhang J, Zhan, C, Xuan Y, Ye M, Xu C, Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015; 523: 739–757.

Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson D.B, Wagener T, Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016; 79: 214–232.

Dai H., Chen X, Ye M, Song X, Zachara JM. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling. Water Resour. Res. 2017; 53: 4327–4343.

Fajraoui N, Ramasomanana F, Younes A, Alex M T, Ackerer P, Guadagnini A. Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory-scale porous media, Water Resources Research. 2011; 47: w02521.

Fajraoui N, Mara TA, Younes A, Bouhlila R. Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion. Water Air Soil Pollut. 2012; 223: 4183–4197.

Younes A, Mara TA, Fajraoui N, Lehmann F, Belfort B, Beydoun H, Use of Global Sensitvity Analysis to Help Assess Unsaturated Soil Hydraulic Parameters. Vadose Zone J. 2013.

Ahamadi ME, Rakotondramiarana HT, Rakotonindrainy. Modeling and Simulation of Compressible Three-Phase Flows in an Oil Reservoir: Case Study of Tsimiroro Madagascar. American Journal of Fluid Dynamics. 2014; 4(4): 181-193.

Ahamadi ME. Modélisation et mise au point d’un code multiphasique pour les écoulements multiphasiques en milieux poreux: Application au gisement pétrolier de Tsimiroro. Ph.D. Thesis; Université d’Antananarivo, 2014. French.

Beheshti R, Sukthankar G. Improving Markov Chain Monte Carlo Estimation with Agent-Based Models, University of Central Florida. [Internet] Available from: http://ial.eecs.ucf.edu/pdf/Sukthankar-SBP2013.pdf

Järvinen H, Räisänen P, Laine M, Tamminen J, Ilin A, Oja E, et al. Estimation of ECHAM5 climate model closure parameters with adaptive MCMC. Atmos. Chem. Phys. 2010; 10: 9993–10002,

Bilal N. Implementation of Sobol’s Method of Global Sensitivity Analysis to a Compressor Simulation Model. International Compressor Engineering Conference. 2014: 2385.

##plugins.themes.bootstrap3.article.details##

How to Cite
Ahamadi, M. E., Rakotondramiarana , H. T., & Arivelo, R. Z. (2022). Parametric Sensitivity Analysis of A Compressible Multiphase Flow Model in Porous Medium: Application to the Tsimiroro Madagascar Oil Reservoir. European Journal of Mathematics and Statistics, 3(5), 30–38. https://doi.org/10.24018/ejmath.2022.3.5.140