On (ψ, ϕ) Contraction in Bicomplex Valued Fuzzy b-Metric Spaces with Application
##plugins.themes.bootstrap3.article.main##
In this article, we introduce the concept of bicomplex valued fuzzy b-metric spaces and a modified (ϕ, ψ) fuzzy contraction.
We construct certain fixed point results in bicomplex valued fuzzy b-metric spaces. Our work is inspired by I. Demir [1] and
Singh et al. [2]. Some examples are provided to validate our results. Further, we substantiate the utility of our work in identifying
the unique solution to a system of equations emerging in dynamic programming.
References
-
Demir I. Fixed Point Theorems in complex valued fuzzy b-metric spaces with application to integral equations. Miskolc Mathematical Notes. 22; (1) (2021): 153–171. DOI: 10.18514/MMN.2021.3173.
Google Scholar
1
-
Singh D., Joshi V., Imdad M., Kumam P. A novel framework of complex valued fuzzy metric spaces and fixed point theorems. Journal of Intelligent and Fuzzy Systems. 30; (2016): 3227–3238. DOI:10.3233/IFS-152065.
Google Scholar
2
-
Segre C. Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici. Math. Ann. 40 ;(1892): 413–467.
Google Scholar
3
-
Price G. B. An Introduction to Multicomplex Spaces and Functions. Marcel Dekker. New York. 1991.
Google Scholar
4
-
Banach S. Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrals. Fundam. Math. 3; (1922): 133–181. URL: http://matwbn.icm.edu.pl/ksiazki/or/or2/or215.pdf.
Google Scholar
5
-
Zadeh L. A. Fuzzy sets. Inform and Control. 8;(1965): 338–353. DOI:10.1016/S0019-9958(65)90241-X.
Google Scholar
6
-
Kramosil I., Michalek J. Fuzzy metric and statistical metric spaces. Kybernetika. 11 ;(1975): 326–334. URL: http://dml.cz/dmlcz/125556.
Google Scholar
7
-
Grabiec M. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems. 27; (1988): 385–389. DOI:10.1016/0165-0114(88)90064-4.
Google Scholar
8
-
George A., Veeramani P. On some results in fuzzy metric spaces. Fuzzy Sets and Systems. 64; (1994): 395–399. DOI:10.1016/0165-0114(94)90162-7.
Google Scholar
9
-
Melliani S., Moussaoui A. Fixed point theorem using a new class of fuzzy contractive mappings. Journal of Universal Mathematics. 1;(2) (2018):148–154.
Google Scholar
10
-
Mihet D. Fuzzy ψ-contractive mappings in non-archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159;(6) (2008): 739–744. DOI:
Google Scholar
11
-
1016/j.fss.2007.07.006.
Google Scholar
12
-
Shukla S., Gopal D., Sintunavarat W. A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems. 350; (2018): 85–94. DOI:10.1016/j.fss.2018.02.010.
Google Scholar
13
-
Wardowski D., Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems. 222; (2013): 108–114. DOI:10.1016/j.fss.2013.01.012.
Google Scholar
14
-
Buckley J.J. Fuzzy complex numbers. in Proc ISFK. Guangzhou, China. (1987): 597S¸ 700.
Google Scholar
15
-
Buckley J.J. Fuzzy complex numbers. Fuzzy Sets Syst. 33 (1989): 333S¸ 345.
Google Scholar
16
-
Buckley J.J. Fuzzy complex analysis I: Differentiation. Fuzzy Sets Syst, 41; (1991): 269S¸ 284.
Google Scholar
17
-
Buckley J.J., Fuzzy complex analysis II: Integration. Fuzzy Sets Syst. 49; (1992): 171S¸ 179.
Google Scholar
18
-
Ramot D., Milo R., Friedman M., Kandel A. IEEE Transactions of Fuzzy Systems. 10;(2) (2002): 171–186.
Google Scholar
19
-
Gregori V., Sapena A. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems. 125;(2002): 245–252. DOI:10.1016/S0165-0114(00)00088-9.
Google Scholar
20
-
Tirado Pel´aez. Contraction mappings in fuzzy quasi-metric spaces and [0, 1]-fuzzy posets. Fixed Point Theory. 13;(2012): 273–283.
Google Scholar
21
-
Pal D., Rakesh Sarkar R., Manna A., Datta S.K. A common fixed point theorem for six mappings in bicomplex valued metric spaces. Journal of Xi’an University of Architecture and Technology. 13;(1) (2021): 168–176.
Google Scholar
22
-
Choi J., Datta S. K., Biswas T., Islam N. Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam Mathematical J. 39;(1) (2017):115–126.
Google Scholar
23
-
Shukla S., Rodriguez-Lopez R., M. Abbas Fixed point results for contractive mappings in complex valued fuzzy metric spaces. Fixed Point Theory. 19;(2) (2018): 751–774. DOI: 10.24193/fpt-ro.2018.2.56.
Google Scholar
24
-
Baskaran R. Subrahmanyam P.V. A note on the solution of a class of functional equations. Appl. Anal. 22;(1986): 235–241.
Google Scholar
25
-
Bellman R., Lee E.S. Functional equations in dynamic programming. Aequ. Math. 17: (1978): 1–18.
Google Scholar
26
-
Ismat Beg I., Datta S.K., Pal D. Fixed point in bicomplex valued metric spaces. Int. J. Nonlinear Anal. Appl. 12; (2) (2021): 717–727. DOI :10.22075/ijnaa.2019.19003.2049.
Google Scholar
27