##plugins.themes.bootstrap3.article.main##

In this article, we introduce the concept of bicomplex valued fuzzy b-metric spaces and a modified (ϕ, ψ) fuzzy contraction.
We construct certain fixed point results in bicomplex valued fuzzy b-metric spaces. Our work is inspired by I. Demir [1] and
Singh et al. [2]. Some examples are provided to validate our results. Further, we substantiate the utility of our work in identifying
the unique solution to a system of equations emerging in dynamic programming.

References

  1. Demir I. Fixed Point Theorems in complex valued fuzzy b-metric spaces with application to integral equations. Miskolc Mathematical Notes. 22; (1) (2021): 153–171. DOI: 10.18514/MMN.2021.3173.
     Google Scholar
  2. Singh D., Joshi V., Imdad M., Kumam P. A novel framework of complex valued fuzzy metric spaces and fixed point theorems. Journal of Intelligent and Fuzzy Systems. 30; (2016): 3227–3238. DOI:10.3233/IFS-152065.
     Google Scholar
  3. Segre C. Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici. Math. Ann. 40 ;(1892): 413–467.
     Google Scholar
  4. Price G. B. An Introduction to Multicomplex Spaces and Functions. Marcel Dekker. New York. 1991.
     Google Scholar
  5. Banach S. Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrals. Fundam. Math. 3; (1922): 133–181. URL: http://matwbn.icm.edu.pl/ksiazki/or/or2/or215.pdf.
     Google Scholar
  6. Zadeh L. A. Fuzzy sets. Inform and Control. 8;(1965): 338–353. DOI:10.1016/S0019-9958(65)90241-X.
     Google Scholar
  7. Kramosil I., Michalek J. Fuzzy metric and statistical metric spaces. Kybernetika. 11 ;(1975): 326–334. URL: http://dml.cz/dmlcz/125556.
     Google Scholar
  8. Grabiec M. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems. 27; (1988): 385–389. DOI:10.1016/0165-0114(88)90064-4.
     Google Scholar
  9. George A., Veeramani P. On some results in fuzzy metric spaces. Fuzzy Sets and Systems. 64; (1994): 395–399. DOI:10.1016/0165-0114(94)90162-7.
     Google Scholar
  10. Melliani S., Moussaoui A. Fixed point theorem using a new class of fuzzy contractive mappings. Journal of Universal Mathematics. 1;(2) (2018):148–154.
     Google Scholar
  11. Mihet D. Fuzzy ψ-contractive mappings in non-archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159;(6) (2008): 739–744. DOI:
     Google Scholar
  12. 1016/j.fss.2007.07.006.
     Google Scholar
  13. Shukla S., Gopal D., Sintunavarat W. A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems. 350; (2018): 85–94. DOI:10.1016/j.fss.2018.02.010.
     Google Scholar
  14. Wardowski D., Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems. 222; (2013): 108–114. DOI:10.1016/j.fss.2013.01.012.
     Google Scholar
  15. Buckley J.J. Fuzzy complex numbers. in Proc ISFK. Guangzhou, China. (1987): 597S¸ 700.
     Google Scholar
  16. Buckley J.J. Fuzzy complex numbers. Fuzzy Sets Syst. 33 (1989): 333S¸ 345.
     Google Scholar
  17. Buckley J.J. Fuzzy complex analysis I: Differentiation. Fuzzy Sets Syst, 41; (1991): 269S¸ 284.
     Google Scholar
  18. Buckley J.J., Fuzzy complex analysis II: Integration. Fuzzy Sets Syst. 49; (1992): 171S¸ 179.
     Google Scholar
  19. Ramot D., Milo R., Friedman M., Kandel A. IEEE Transactions of Fuzzy Systems. 10;(2) (2002): 171–186.
     Google Scholar
  20. Gregori V., Sapena A. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems. 125;(2002): 245–252. DOI:10.1016/S0165-0114(00)00088-9.
     Google Scholar
  21. Tirado Pel´aez. Contraction mappings in fuzzy quasi-metric spaces and [0, 1]-fuzzy posets. Fixed Point Theory. 13;(2012): 273–283.
     Google Scholar
  22. Pal D., Rakesh Sarkar R., Manna A., Datta S.K. A common fixed point theorem for six mappings in bicomplex valued metric spaces. Journal of Xi’an University of Architecture and Technology. 13;(1) (2021): 168–176.
     Google Scholar
  23. Choi J., Datta S. K., Biswas T., Islam N. Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam Mathematical J. 39;(1) (2017):115–126.
     Google Scholar
  24. Shukla S., Rodriguez-Lopez R., M. Abbas Fixed point results for contractive mappings in complex valued fuzzy metric spaces. Fixed Point Theory. 19;(2) (2018): 751–774. DOI: 10.24193/fpt-ro.2018.2.56.
     Google Scholar
  25. Baskaran R. Subrahmanyam P.V. A note on the solution of a class of functional equations. Appl. Anal. 22;(1986): 235–241.
     Google Scholar
  26. Bellman R., Lee E.S. Functional equations in dynamic programming. Aequ. Math. 17: (1978): 1–18.
     Google Scholar
  27. Ismat Beg I., Datta S.K., Pal D. Fixed point in bicomplex valued metric spaces. Int. J. Nonlinear Anal. Appl. 12; (2) (2021): 717–727. DOI :10.22075/ijnaa.2019.19003.2049.
     Google Scholar