##plugins.themes.bootstrap3.article.main##

In our present work, we defined an inequality called Fekete – Szegö Inequality for functions f(z) in the classes of starlike functions and convex functions along with subclasses of these classes.

References

  1. De Branges, L. (1985), A proof of Bieberbach Conjecture, Acta. Math., vol. 154, pp. 137-152.
     Google Scholar
  2. Duren, P.L. (1977), Coefficient of univalent functions, Bulletin of American Mathematical Society, vol. 83, pp. 891-911.
     Google Scholar
  3. Fekete, M. and Szegö, G. (1933), Eine Bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., vol. 8, pp. 85-89.
     Google Scholar
  4. Garabedian, P.R. and Schiffer, M. (1955), A Proof for the Bieberbach Conjecture for the fourth coefficient, Arch. Rational Mech. Anal., vol. 4, pp. 427-465.
     Google Scholar
  5. Keogh, F. R. and Merkes, E. P. (1989), A coefficient inequality for certain classes of analytic functions, Proc. Of Amer. Math. Soc., vol. 20, pp. 8-12.
     Google Scholar
  6. Koebe, P. (1907), Uber Die uniformisierung beliebiger analytischer Kurven, Nach. Ges. Wiss. Gottingen, vol. 1907, pp. 633-669.
     Google Scholar
  7. Lindelof, E. (1909), Memoire sur certaines inegalities dans la theorie des functions monogenes et sur quelquesproprieties nouvellles de ces fonctions dans la voisinaged´unpointsingulier essential, Acta Soc. Sci. Fenn., vol. 23, pp. 481-519.
     Google Scholar
  8. Löewner, C. (1923), Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises I, Math. Ann., vol. 89, pp. 103-121.
     Google Scholar
  9. Miller, S.S., Mocanu, P.T. and Reade, M.O. (1973), All convex functions are univalent and starlike, Proceedings of American Mathematical Society, vol. 37, pp. 553-554.
     Google Scholar
  10. Minda, D. and MA, W., A unified treatment of some special classes of univalent functions, In proceedings of the conference on complex analysis, Z. Li, F. Ren, I. Yang and S. Zhang (Eds), Int. Press (1994), 157-169.
     Google Scholar
  11. Nevanlinna, R. (1922), Uber die Eigenschaften einer analytischen funktionen in der Umgebung einer singulären Stele Order Linie, Acta Soc. Sci. Fenn., vol. 50, pp. 1-46.
     Google Scholar
  12. Pederson, R. (1968-69), A proof for the Bieberbach conjecture for the sixth coefficient, Arch. Rational Mech. Anal., vol. 31, pp. 331-351.
     Google Scholar
  13. Pederson, R. and Schiffer, M. (1972), A proof for the Bieberbach conjecture for the fifth coefficient, Arch. Rational Mech. Anal., vol. 45, pp. 161-193.
     Google Scholar
  14. Singh, G. (2014), Fekete–Szego Inequality for a new class and its certain subclasses of analytic functions, General Mathematical Notes, vol. 21, pp. 86-96.
     Google Scholar