Approximate Method to Compute Hypersingular Finite-Part Integrals with Rapidly Oscillating Kernels
##plugins.themes.bootstrap3.article.main##
In this paper, an algorithm for the numerical evaluation of hypersingular finite-part integrals with rapidly oscillating kernels is proposed. The method is based on an interpolatory procedure at zeros of the orthogonal polynomials with respect to the first kind Chebyshev weight. Bounds of the error and of the amplification factor are also provided. Numerically stable procedures are obtained and the corresponding algorithms can be implemented in a fast way.
References
-
Colton D, Kress R Integral Equation Methods in Scattering Theory. New York: Wiley; 1983.
Google Scholar
1
-
Colton D, Kress R Inverse Acoustic and Electromagnetic Scattering Theory. New York: Springer; 1992.
Google Scholar
2
-
Davis PJ, Duncan DB. Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 2004; 42(3):1167–1188. doi:10.1137/S0036142901395321.
Google Scholar
3
-
Korsunsky AM. On the use of interpolative quadratures for hypersingular integrals in fracture mechanics. Proc. R. Soc. Lond. A. 2002;458:2721–2733. doi:10.1098/rspa.2002.1001.
Google Scholar
4
-
Capobianco MR, Criscuolo G. On quadrature for Cauchy principal value integrals of oscillatory functions, J. Comput. and Appl. Math. 2003;156:471–486. doi:10.1016/S0377-0427(03)00388-1.
Google Scholar
5
-
Boykov I, Roudnev V, Boykovova A. Approximate methods for calculating singular and hypersingular integrals with rapidly oscillating kernels. Axioms. 2022;11:1-22. Doi:10.3390/axioms11040150.
Google Scholar
6
-
Kiang S, Fang C, Xu Z. On uniform approximations to hypersingular finite-part integrals. J. Math. Anal. Appl. 2016;135:1210–1228. doi:10.1016/j.jmaa.2015.11.002.
Google Scholar
7
-
Criscuolo GA. new algorithm for Cauchy principal value and Hadamard finite-part integrals. J. Comput. and Appl. Math. 1997;78:255–275.
Google Scholar
8
-
Mikhlin SG. Prӧssdorf S Singular Integral Operators. Berlin: Akademie Verlag; 1986.
Google Scholar
9
-
Capobianco MR, Criscuolo G. An algorithm for hypersingular integrals with rapidly oscillating kernels; 2023 submitted.
Google Scholar
10
-
Ditzian Z, Totik V. Moduli of Smoothness. SCGM, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokio; 1987.
Google Scholar
11
-
Wolfram S. Mathematica - A System for Doing Mathematics by Computer. Redwood City: Addison - Wesley; 1988.
Google Scholar
12