##plugins.themes.bootstrap3.article.main##

In this paper, we introduce the concept of convex structure in generalized fuzzy metric spaces and proved common fixed point theorems for a pair of self-mappings under sufficient contractive type conditions.

References

  1. George. A. and Veeramani (1997), Fuzzy sets and Systems, 365-368.
     Google Scholar
  2. Jungck. G, (1986), Compatible mappings band common fixed points Internat, J. Math.and Math. Sci.9, 771-779.
     Google Scholar
  3. Kaleva. O and Seikkala. S, (1984), On fuzzy metric spaces, Fuzzy sets and systems, 12, 215-229.
     Google Scholar
  4. Kramosil. I and Michalek. J, (1975), Fuzzy metric and statistical metric spaces, Kubernetika, 11, 336-344.
     Google Scholar
  5. Kubiaczyk. I and Sushil Sharma, (2002), Common fixed point multi maps in fuzzy metric space, East Asian Math. J. 18, (2), 175-182.
     Google Scholar
  6. Mishra. S. N, Sharma. N and Singh. S. L, (1994), Common fixed points of maps on fuzzy metric spaces, Internat. J. Math.and Math. BSci.,17,253-258.
     Google Scholar
  7. Singh. B and Jain. S, (2007), Generalized theorem in fuzzy metric spaces, Southeast Asian Bulletin of Mathematics, 31, 1-16.
     Google Scholar
  8. Sharma. S, (2002), On fuzzy metric space, Southeast Asian Bulletin of Mathematics, 26, 133-145.
     Google Scholar
  9. Sushil Sharma, (2002), Common fixed point theorems in fuzzy metric spaces, Fuzzy Setsand Systems, 127, 345-352.
     Google Scholar
  10. Thanithamil. A. and Thirunavukarasu. P, (2014), Some Results in fuzzy metric spaces with convex structure, Int. Journal of Math .Analysis, 8, 57, 2827–2836.
     Google Scholar
  11. Vijayaraju. P and Sajath. Z.M.I, (2009), Some common fixed point theorems in fuzzy metric spaces, Int. Journal of Math.Analysis,3, 701-710.
     Google Scholar
  12. Zadeh, L. A, (1965), Fuzzy sets, Information and Computation, 8, 338-353.
     Google Scholar