Suzuki-Type of Common Fixed Point Theorems in S-Fuzzy Metric Spaces
##plugins.themes.bootstrap3.article.main##
In this paper, by using of Suzuki-type approach [Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136, 1861–1869, 2008.] we prove new type of Suzuki- type fixed point theorem for non-Archimedean S - fuzzy metric spaces which is generalization of Suzuki-Type fixed point results in S - metric spaces.
References
-
Aamri.M and Moutawakil D.El, “Some new common fixed point theorems under strict contractive conditions”, J. Math. Anal. Appl., pp. 181-188, Vol. 27, 2002.
Google Scholar
1
-
George. A. and Veeramani. P., “On some results in fuzzy metric spaces”. Fuzzy sets and systems. pp 395–399, Vol. 64, 1994.
Google Scholar
2
-
Jong Kyu Kim, Shaban Sedghi, A. Gholidahneh, M. Mahdi Rezaee, “Fixed point theorems in S-metric spaces”, East Asian Math. J., Vol. 32 (5), pp. 677-684, 2016.
Google Scholar
3
-
Kramosil. I and Michalek. J, “Fuzzy metric and statistical spaces”, Kybernetica, Vol 11, pp. 336 -344, 1975.
Google Scholar
4
-
Mihet D., “A Banach contraction theorem in fuzzy metric spaces” Fuzzy Sets Syst, Vol. 144, pp. 431–439, 2004.
Google Scholar
5
-
Suzuki, T., “A generalized Banach contraction principle that characterizes metric Completeness”, Proc. Amer. Math. Soc., Vol. 136, pp. 1861–1869, 2008.
Google Scholar
6
-
Suzuki, T., “A new type of fixed point theorem in metric spaces”, Nonlinear Anal., Vol. 71, pp. 5313–5317, 2009.
Google Scholar
7
-
Sedghi, S., Shobe, N., Aliouche, A, “A generalization of fixed point theorems in S-metric spaces”. Mat. Vesnik Vol 64(3), pp. 258–266, 2012.
Google Scholar
8
-
Shaban Sedghi, I. Altun, N. Shobe, M. A. Salahshour, “Some Properties of S-metric Spaces and Fixed Point Results”, Kyungpook Math. J. Vol. 54, pp. 113-122, 2014.
Google Scholar
9
-
Shaban Sedghi, NV. Dung, “Fixed point theorems on S-metric spaces”, Mat. Vesnik, Vol. 66, pp. 113-124, 2014.
Google Scholar
10
-
Shaban Sedghi, Nabi Shobe and Tatjana Dosenovic, “Fixed point results in S-metric spaces”, Nonlinear Funct. Anal. Appl., Vol. 20, pp. 55-67, 2015.
Google Scholar
11
-
Vasuki, R., Veeramani, P., “Fixed point theorems and Cauchy sequences in fuzzy metric spaces”, Fuzzy Sets Syst, Vol. 13(5), pp. 409–413, 2003.
Google Scholar
12
-
Zadeh, L. A, “Fuzzy sets”, Information and Computation, Vol. 8, pp. 338-353, 1965.
Google Scholar
13
Most read articles by the same author(s)
-
M. Jeyaraman,
V. Vinoba,
V. Pazhani,
Convex Structure in Generalized Fuzzy Metric Spaces , European Journal of Mathematics and Statistics: Vol. 2 No. 4 (2021)