##plugins.themes.bootstrap3.article.main##

In this paper, by using of Suzuki-type approach [Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136, 1861–1869, 2008.] we prove new type of Suzuki- type fixed point theorem for non-Archimedean S - fuzzy metric spaces which is generalization of Suzuki-Type fixed point results in S - metric spaces.

References

  1. Aamri.M and Moutawakil D.El, “Some new common fixed point theorems under strict contractive conditions”, J. Math. Anal. Appl., pp. 181-188, Vol. 27, 2002.
     Google Scholar
  2. George. A. and Veeramani. P., “On some results in fuzzy metric spaces”. Fuzzy sets and systems. pp 395–399, Vol. 64, 1994.
     Google Scholar
  3. Jong Kyu Kim, Shaban Sedghi, A. Gholidahneh, M. Mahdi Rezaee, “Fixed point theorems in S-metric spaces”, East Asian Math. J., Vol. 32 (5), pp. 677-684, 2016.
     Google Scholar
  4. Kramosil. I and Michalek. J, “Fuzzy metric and statistical spaces”, Kybernetica, Vol 11, pp. 336 -344, 1975.
     Google Scholar
  5. Mihet D., “A Banach contraction theorem in fuzzy metric spaces” Fuzzy Sets Syst, Vol. 144, pp. 431–439, 2004.
     Google Scholar
  6. Suzuki, T., “A generalized Banach contraction principle that characterizes metric Completeness”, Proc. Amer. Math. Soc., Vol. 136, pp. 1861–1869, 2008.
     Google Scholar
  7. Suzuki, T., “A new type of fixed point theorem in metric spaces”, Nonlinear Anal., Vol. 71, pp. 5313–5317, 2009.
     Google Scholar
  8. Sedghi, S., Shobe, N., Aliouche, A, “A generalization of fixed point theorems in S-metric spaces”. Mat. Vesnik Vol 64(3), pp. 258–266, 2012.
     Google Scholar
  9. Shaban Sedghi, I. Altun, N. Shobe, M. A. Salahshour, “Some Properties of S-metric Spaces and Fixed Point Results”, Kyungpook Math. J. Vol. 54, pp. 113-122, 2014.
     Google Scholar
  10. Shaban Sedghi, NV. Dung, “Fixed point theorems on S-metric spaces”, Mat. Vesnik, Vol. 66, pp. 113-124, 2014.
     Google Scholar
  11. Shaban Sedghi, Nabi Shobe and Tatjana Dosenovic, “Fixed point results in S-metric spaces”, Nonlinear Funct. Anal. Appl., Vol. 20, pp. 55-67, 2015.
     Google Scholar
  12. Vasuki, R., Veeramani, P., “Fixed point theorems and Cauchy sequences in fuzzy metric spaces”, Fuzzy Sets Syst, Vol. 13(5), pp. 409–413, 2003.
     Google Scholar
  13. Zadeh, L. A, “Fuzzy sets”, Information and Computation, Vol. 8, pp. 338-353, 1965.
     Google Scholar