The Formula of the Trace of Triangle n×n Matrix to the Power of Positive Integer
##plugins.themes.bootstrap3.article.main##
This study determined the general form of the trace of the triangular matrices n × n with the power of positive integer. Before obtaining the general form of the trace of triangular matrices (upper triangle and lower triangle) n × n with the power positive integer, first obtain the general form of the triangular matrices n × n with power positive integer. Obtaining the general form of the triangular matrices n × n with the power positive integer is carried out by determining of the triangular matrices from power two to power eight. It is further suspected that the general form of a triangular matrices n × n with the power of a positive integer and prove it using mathematical induction. Finally, a triangular matrices trace n × n with the power of a positive integer is obtained with direct proof based on the general form of the matrices has been obtained. Given the application trace of the triangle matrices n × n with power positive integer by an example.
References
-
Brezinski C, Fika P, Mitrouli M. Estimations of the Trace of Powers of Positive Self-Adjoint Operators by Extrapolation of the Moments. Electronic Transactions on Numerical Analysis. 2012 May 7; 39:144–155.
Google Scholar
1
-
Pahade J, Jha M. Trace of Positive Integer Power of Real 2 × 2 Matrices. Advances in Linear Algebra & Matrix Theory. 2015 Desember; 5 (4): 150–155.
Google Scholar
2
-
Aryani F, Solihin M. Trace Matriks Real Berpangkat Bilangan Bula Negatif, Jurnal Sains Matematika dan Statistika. 2017 Juli; 3 (2): 16–23.
Google Scholar
3
-
Aryani F, Yulianis. Trace Matriks Berbentuk Khusus 2×2 Berpangkat Bilangan Bulat Negatif. Jurnal Sains Matematika dan Statistika. 2018 Juli; 4 (2): 105–113.
Google Scholar
4
-
Aryani F, Cenia PB, Muda Y, Zukrianto Trace Matriks Simetris Berbentuk Khusus Orde 3 Berpangkat Bilangan Bulat. Prosiding Nasional pada Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI); 2021 Nov 18; (13): 300–310.
Google Scholar
5
-
Aryani F, Harnita, Muda Y, Zukrianto. Trace Matriks Simetris Berbentuk Khusus 4 x 4 Berpangkat Bilangan Bulat. Prosiding Nasional pada Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI); 2021 Nov 18; (13): 311–321.
Google Scholar
6
-
Aryani F, Alfinov SP, Marzuki CC, Rahma AN, Trace Matriks Simetris Berbentuk Khusus 5 x 5 Berpangkat Bilangan Bulat. (SNTIKI); 2021 Nov18; (13): 322–333.
Google Scholar
7
-
Rahmawati, Putri NA, Aryani F, Rahma AN. Trace Matriks Toeplitz Simetris Bentuk Khusus 3×3 Berpangkat Bilangan Bulat Positif. Jurnal Sains Matematika dan Statistika. 2019 Juli; 5 (2): 61–70.
Google Scholar
8
-
Aryani F, Andesta R, Marzuki CC. Trace Matriks Berbentuk Khusus 3×3 Berpangkat Bilangan Bulat Positif. Jurnal Sains Matematika dan Statistika. 2020 Januari; 6 (1): 40–9.
Google Scholar
9
-
Aryani F, Taslim R. Trace Matrix 3 x 3 Berpangkat Bilangan Bulat. Jurnal Sains Matematika dan Statistika. 2021 Januari; 7 (1): 1–9.
Google Scholar
10
-
Marjono. Linear Algebra. Malang UB Press; 2012.
Google Scholar
11
-
Gentle JE. Matrix algebra, vol. 10. Springer; 2007.
Google Scholar
12
-
Kariadinata R. Algebra of Elementary Matrices. Bandung Pustaka Setia; 2013.
Google Scholar
13
-
Larson R. Elementary Linear Algebra. 7th ed. Boston Cengage Learning; 2013.
Google Scholar
14
-
Rosen KH. Discrete Mathematics and Its Applications. New York Mc Graw Hill; 2007.
Google Scholar
15
-
Munir R. Discrete Mathematics. Bandung Informatics ITB; 2005.
Google Scholar
16
-
Rifa'I R. Basic Matrix Algebra. Yogyakarta Budi Utama; 2016.
Google Scholar
17
-
Banerjee S, Roy A. Linear Algebra and Matrix Analysis for Statistics. Crc Press Boca Raton; 2014.
Google Scholar
18
-
Anton H, Rorres C. Elementary Linear Algebra. United States of America Wiley; 2013.
Google Scholar
19