##plugins.themes.bootstrap3.article.main##

We consider the generalized dual transformation for hyperelliptic ℘ functions. For the genus two case, by constructing a quadratic invariant form, we find that hyperelliptic ℘ functions have the SO(3,2) ∼= Sp(4,R)/Z2 Lie group structure.

.

References

  1. Gardner C.S, Greene J.M, Kruskal M.D, Miura R.M. Method for Solving the Korteweg-de Vries Equation. Phys. Rev. Lett., 1967; 19: 1095-1097.
     Google Scholar
  2. Lax P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Commun. Pure and Appl. Math., 1968; 21: 467-490.
     Google Scholar
  3. Zakharov V.E, Shabat A.B. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media. Sov.
     Google Scholar
  4. Phys. JETP, 1972; 34: 62-69.
     Google Scholar
  5. Ablowitz M.J, Kaup D.J, Newell A.C, Segur H. Nonlinear-evolution Equations of Physical Significance. Phys. Rev. Lett., 1973; 31: 125-127.
     Google Scholar
  6. Bianchi L. Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante. Ann. Scuola Norm. Sup. Pisa (1), 1879; 2: 285-341.
     Google Scholar
  7. Hermann R. Pseudopotentials of Estabrook and Wahlquist, the Geometry of Solitons, and the Theory of Connections. Phys. Rev. Lett., 1976; 36: 835-836.
     Google Scholar
  8. Sasaki R. Soliton Equation and Pseudospherical Surfaces. Nucl. Phys., 1979; B154: 343-357.
     Google Scholar
  9. Wahlquist H.D, and Estabrook F.B. Ba ̈cklund Transformation for Solution of Korteweg-de Vries Equation. Phys. Rev. Lett., 1973; 31: 1386-1390.
     Google Scholar
  10. Wadati M. Ba ̈cklund Transformation for Solutions of the Modified Korteweg-de Vries Equation. J. Phys. Soc. Jpn., 1974; 36: 1498.
     Google Scholar
  11. Konno K, Wadati M. Simple Derivation of Backlund Transformation from Riccati Form of Inverse Method. Prog. Theor. Phys., 1975; 53: 1652-1656.
     Google Scholar
  12. Hirota R. Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett., 1971; 27: 1192-1194.
     Google Scholar
  13. Hirota R. Exact Solution of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons. J. Phys. Soc. Jpn., 1972; 33: 1456-1458.
     Google Scholar
  14. Sato M. Soliton Equations as Dynamical Systems on an Infinite Dimensional Grassmann Manifolds. RIMS Kokyuroku (Kyoto University), 1981; 439: 30-46.
     Google Scholar
  15. Miwa T, Jimbo M, Date E. Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge University Press, Cambridge, 2000.
     Google Scholar
  16. Date E, Kashiwara M, Miwa T. Vertex Operators and τ Functions: Transformation Groups for Soliton Equations. II. Proc. Japan Acad., 1981; 57A: 387-392.
     Google Scholar
  17. Jimbo M, Miwa T. Solitons and Infinite Dimensional Lie Algebra. Publ. RIMS. Kyoto Univ., 1983; 19: 943-1001.
     Google Scholar
  18. Weiss J. The Painleve ́ Property for Partial Differential Equations. II: Ba ̈cklund Transformation, Lax Pairs, and the Schwarzian Derivative. J. Math. Phys., 1983; 24: 1405-1413.
     Google Scholar
  19. Hayashi M, Shigemoto K, Tsukioka T. The Construction of the mKdV Cyclic Symmetric N-soliton Solution by the Ba ̈cklund Transformation. Mod. Phys. Lett., 2019; A34: 1950136.
     Google Scholar
  20. Hayashi M, Shigemoto K, Tsukioka T. The Static Elliptic N-soliton Solutions of the KdV Equation. J. Phys. Commun., 2019; 3: 045004.
     Google Scholar
  21. Hayashi M, Shigemoto K, Tsukioka T. The Unified Soliton System as the AdS2 System. J. Phys. Commun., 2019; 3: 085015.
     Google Scholar
  22. Hayashi M, Shigemoto K, Tsukioka T. Common Hirota Form Ba ̈cklund Transformation for the Unified Soliton System. J. Phys. Commun., 2020; 4: 015014.
     Google Scholar
  23. Hayashi M, Shigemoto K, Tsukioka T. Elliptic Solutions for Higher Order KdV Equations. J. Phys. Commun., 2020; 4: 045013.
     Google Scholar
  24. Hayashi M, Shigemoto K, Tsukioka T. Differential Equations of Genus Four Hyperelliptic ℘ Functions. J. Phys. Commun., 2021; 5: 105008.
     Google Scholar
  25. Hayashi M, Shigemoto K, Tsukioka T. Two Flows Kowalevski Top as the Full Genus Two Jacobi’s Inversion Problem and Sp(4,R) Lie Group Structure. J. Phys. Commun., 2022; 6: 025006.
     Google Scholar
  26. Hayashi M, Shigemoto K, Tsukioka T. The Half period Addition Formulae for Genus Two Hyperelliptic ℘ Functions and the Sp(4,R) Lie Group Structure. J. Phys. Commun., 2022; 6: 085004.
     Google Scholar
  27. Baker H.F. Abelian Functions: Abel’s theorem and the allied theory of theta functions, Cambridge University Press, Cambridge, 1995: p.321-p.323, p.328.
     Google Scholar
  28. Baker H.F. An Introduction To the Theory of Multiply Periodic Functions, Cambridge University Press, Cambridge, 1909: p.38, p.49.
     Google Scholar
  29. Baker H.F. On a Certain System of Differential Equations Defining Periodic Functions. Proc. Camb. Phil. Soc. , 1898; 9: 513-520.
     Google Scholar
  30. Baker H.F. On the Differential Equations of the Hyperelliptic Functions. Proc. Camb. Phil. Soc., 1903; 12: 219-239.
     Google Scholar