##plugins.themes.bootstrap3.article.main##

In 1995, Olivier Ramaret proved that any even number is the sum of no more than 6 primes. From the validity of Goldbach's ternary hypothesis (proved in 2013 year) it follows that any even number is the sum of not more than 4 numbers [1]. In the article, the author confirms the above and proves that the cause and effect of this is any even number the sum of not more than two prime and twin primes are infinite [8]-[14].

References

  1. https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D0%B0_%D0%93%D0%BE%D0%BB%D1%8C%D0%B4%D0%B1%D0%B0%D1%85%D0%B0.
     Google Scholar
  2. http://molodyvcheny.in.ua/files/conf/other/33feb2019/67.pdf.
     Google Scholar
  3. http://www.ijma.info/index.php/ijma/article/view/5973.
     Google Scholar
  4. https://www.ijma.info/index.php/ijma/article/view/6048/3565.
     Google Scholar
  5. https://doi.org/10.30525/978-9934-588-11-2_17.
     Google Scholar
  6. https://ppublishing.org/upload/iblock/977/EJT-6_2018.pdf, page 18-19.
     Google Scholar
  7. http://molodyvcheny.in.ua/files/conf/other/49july2020/20.pdf.
     Google Scholar
  8. Chen, J.R. "On the Distribution of Almost Primes in an Interval."Sci. Sinica18, 611-627, 1975.
     Google Scholar
  9. Euler, L. "De numeris primis valde magnis."Novi Commentarii academiae scientiarum Petropolitanae9, 99-153, (1760) 1764. Reprinted in Commentat. arithm.1, 356-378, 1849. Reprinted in Opera Omnia: Series 1, Volume 3, pp.1-45.
     Google Scholar
  10. Goldman, J.R.The Queen of Mathematics: An Historically Motivated Guide to Number Theory.Wellesley, MA: A K Peters, p. 22, 1998.
     Google Scholar
  11. Hardy, G.H. and Wright, W.M. "Unsolved Problems Concerning Primes." §2.8 and Appendix §3 in An Introduction to the Theory of Numbers, 5th ed.Oxford, England: Oxford University Press, pp.19 and 415-416, 1979.
     Google Scholar
  12. Iwaniec, H. and Pintz, J. "Primes in Short Intervals."Monatsh. f. Math.98, 115-143, 1984.
     Google Scholar
  13. Sloane, N.J.A. Sequences A002496/M1506, A005574/M1010, and A007491/M1389 in "The On-Line Encyclopedia of Integer Sequences".
     Google Scholar
  14. Lamb E. Goldbach Variations [Text]/ E.Lamb Scientific American blogs — May 15, 2013.
     Google Scholar