Bayesian using Importance Sampling Technique of Weibull Regression with Type II Censored Data
##plugins.themes.bootstrap3.article.main##
Keeping in view the Bayesian approach, the study aims to develop methods through the utilization of Jeffreys prior and modified Jeffreys prior to the covariate obtained by using the Importance sampling technique. For maximum likelihood estimator, covariate parameters, and the shape parameter of Weibull regression distribution with the censored data of Type II will be estimated by the study. It is shown that the obtained estimators in closed forms are not available, but through the usage of appropriate numerical methods, they can be solved. The mean square error is the criterion of comparison. With the use of simulation, performances of these three estimates are assessed, bearing in mind different censored percentages, and various sizes of the sample.
References
-
Chen, M. H., & Shao, Q. M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, , 69-92.
Google Scholar
1
-
Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409.
Google Scholar
2
-
Johns, M. V. (1988). Importance sampling for bootstrap confidence intervals. Journal of the American Statistical Association, 83(403), 709-714.
Google Scholar
3
-
Hinkley, D. V. (1988). Bootstrap methods. Journal of the Royal Statistical Society.Series B (Methodological), 321-337.
Google Scholar
4
-
Goffinet, B., & Wallach, D. (1996). Optimised importance sampling quantile estimation. Biometrika, 83(4), 791-800.
Google Scholar
5
-
Kundu, D., & Howlader, H. (2010) Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Computational Statistics & Data Analysis, 54 (6), 1547_1558.
Google Scholar
6
-
Al Omari, M. A. & Ibrahim, N. A. & Arasan, J. and Adam, M. B., (2012) Bayesian Survival and Hazard Estimate for Weibull Censored Time Distribution. Journal of Applied Sciences, 12: 1313-1317.
Google Scholar
7
-
Sinha, S. K. (1986). Bayes estimation of the reliability function and hazard rate of a Weibull failure time distribution. Trabajos De Estadística, 1(2), 47-56.
Google Scholar
8
-
Sun, D. (1997). A note on noninformative priors for Weibull distributions. Journal of Statistical Planning and Inference, 61(2), 319-338.
Google Scholar
9
-
Chen, M. H., Ibrahim, J. G., & Kim, S. (2008). Properties and implementation of Jeffreys’s prior in Binomial regression models. Journal of the American Statistical Association, 103(484), 1659-1664.
Google Scholar
10
-
Hahn, J. (2004). Does Jeffreys's prior alleviate the incidental parameter problem? Economics Letters, 82(1), 135-138.
Google Scholar
11
-
Singh, U., Gupta, P. K., & Upadhyay, S. K. (2005). Estimation of parameters for Exponentiated-Weibull family under type-II censoring scheme. Computational Statistics & Data Analysis, 48(3), 509-523.
Google Scholar
12
-
Prakash, G., & Singh, D. C. (2008). Shrinkage estimation in Exponential type-II censored data under LINEX loss. Journal of the Korean Statistical Society, 37(1), 53-61.
Google Scholar
13
-
Calabria, R., & Pulcini, G. (1994). An engineering approach to Bayes estimation for the Weibull distribution. Microelectronics and Reliability, 34(5), 789-802.
Google Scholar
14
-
Grodecki, J. (2001). Generalized maximum-likelihood estimation of variance–covariance components with non-informative prior. Journal of Geodesy, 75(2), 157-163.
Google Scholar
15
-
Zhu, M., & Lu, A. Y. (2004). The counter-intuitive non-informative prior for the Bernoulli family. Journal of Statistics Education, 12(2), 1-10.
Google Scholar
16
-
Kleinbaum D. G. & Klein M. (2005). Survival Analysis: A Self-Learning Text. Springer.
Google Scholar
17
-
Al Omari, M. A. (2016). Bayesian Study Using MCMC of Gompertz Distribution Based on Interval Censored Data with Three Loss Functions. Journal of applied sciences, 16: 88-97.
Google Scholar
18
-
Soliman, A. A., Abd-Ellah, A. H., Abou-Elheggag, N. A., & Ahmed, E. A. (2011). Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data. Reliability Engineering & System Safety, Volume 100, April 2012, Pages 48-57.
Google Scholar
19