##plugins.themes.bootstrap3.article.main##

Lassa Fever, caused by Lassa virus, is a vector-host transmitted infectious disease whose prevalence has been on the upsurge over the past few decades. Thus, considering the grave implications of the continuous spread of the disease, an epidemic model was developed to describe the disease transmission dynamics with impacts of proposed control measures. This is to help inform effective control strategies that would successfully curtail and contain the disease in its endemic areas. The model is qualitatively analyzed in order to contextualize the long run behavior of the model while the model associated basic reproduction number $(\mathcal{R}_0)$ is derived. The model analysis reveals that the disease-free equilibrium is locally and globally stable whenever $ \mathcal{R}_0 < 1 $ and the disease prevalence would be high as long as $ \mathcal{R}_0 > 1 $. Finally, the model is numerically solved and simulated for different scenarios of the disease outbreaks while the findings from simulations are discussed.

References

  1. F. Brauer, C. Castillo-Chavez, A. Mubayi, S. Towers, ”Some models for
     Google Scholar
  2. epidemics of vector-transmitted diseases”, Infectious Disease Modelling,
     Google Scholar
  3. KeAi Advancing Research Evolving Science, vol. 1(2016), pp.79–87,
     Google Scholar
  4. http://dx.doi.org/10.1016/j.idm.2016.08.001
     Google Scholar
  5. T. S. Faniran, ”A Mathematical Modelling of Lassa Fever Dynamics
     Google Scholar
  6. with Non-drug Compliance Rate”, International Journal of Mathematics
     Google Scholar
  7. Trends and Technology, vol. 47(5), pp. 305–318, 2017.
     Google Scholar
  8. I. S. Lukashevich, ”The Search for Animal Models for Lassa Vaccine
     Google Scholar
  9. Development”, National Institutes of Health, vol. 12(1), pp.71–86, 2013.
     Google Scholar
  10. D. Omale and T. E. Edibo, ”Mathematical Models for Lassa Fever
     Google Scholar
  11. Transmission with Control Strategies”, Computing, Information System,
     Google Scholar
  12. Development Informatics & Allied Research Journal, vol.6(4), pp. 25–
     Google Scholar
  13. , 2015.
     Google Scholar
  14. S. Usman. and I. Isa Adamu, ”Modelling the Transmission Dynamics
     Google Scholar
  15. of the Lassa Fever Infection”,IISTE, vol.8(5), pp.42–63, 2018.
     Google Scholar
  16. J. O. Akanni and A. D. Adedipo, ”Sensitive Analysis of the Dynamical
     Google Scholar
  17. Transmission and Control of Lassa Fever Virus”, Asian Research Journal
     Google Scholar
  18. of Mathematics, vol. 9(3), pp. 1–11, 2018.
     Google Scholar
  19. M. M. Ojo, and F. O. Akinpelu, ”Lyapunov Functions and Global Properties of SEIR Epidemic Model”, International Journal of Chemistry,
     Google Scholar
  20. Mathematics and Physics, vol.1(1), pp.11–16, 2017.
     Google Scholar
  21. B. I. Eraikhuemen and O. Eguasa,”Lassa fever and its Control Measures”, Journal of Natural Sciences Research,vol. 7(12), pp. 75–79, 2017.
     Google Scholar
  22. Lassa Fever Outbreak Situation Report, ”Nigeria Center For Disease
     Google Scholar
  23. Control”, [Cited 2019 Mar 11]. http://www.ncdc.gov.ng serial number:04.
     Google Scholar
  24. L. Cai and X. Li, ”Analysis of a Simple Vector-Host Epidemic Model with Direct Transmission”, Discrete Dynamics in Nature and Society, vol. 2010, Article ID 679613, 12 pages, 2010.
     Google Scholar
  25. https://doi.org/10.1155/2010/679613
     Google Scholar
  26. W. O. Kermack, and A. G. McKendrick, ”A contribution to the mathematical theory of epidemics”,Proc. Roy. Soc. London, vol. 115, pp.
     Google Scholar
  27. –721, 1927.
     Google Scholar
  28. J B McCormick, I J King, P A Webb, C L Scribner, R B Craven, K M
     Google Scholar
  29. Johnson, L H Elliott, and R Belmont-Williams, ”Lassa fever. Effective
     Google Scholar
  30. therapy with ribavirin”, N Engl J Med. 1986 vol. 314(1), pp.20-6, 1986.
     Google Scholar
  31. doi:10.1056/NEJM198601023140104, PMID: 3940312.
     Google Scholar
  32. Viral Hemorrhagic Fever (VHFs), ”Centers for Disease Control
     Google Scholar
  33. and Prevention”, [visited march 2019], https://www.cdc.gov/vhf/virusfamilies/arenaviridae.html
     Google Scholar
  34. E. Fichet-Calvet, E. Lecompte, L. Koivogui, B. Soropogui, A. Dore,´
     Google Scholar
  35. F. Kourouma, O. Sylla, S. Daffis, K. Koulemou, and J. Ter Meulen, ´
     Google Scholar
  36. ”Fluctuation of abundance and Lassa virus prevalence in Mastomys
     Google Scholar
  37. natalensis in Guinea, West Africa”, Vector Borne Zoonotic Dis., vol.
     Google Scholar
  38. (2), pp. 119–28, 2007. doi:10.1089/vbz.2006.0520, PMID: 17627428.
     Google Scholar
  39. World Health Organization, ”Lassa Fever-fact
     Google Scholar
  40. sheet, reviewed July 2017”, [visited march 2019]
     Google Scholar
  41. http://www.who.int/mediacentre/factsheets/fs179/en/
     Google Scholar
  42. R. M. Anderson and R. M. May, ”Infectious Disease of Humans”,
     Google Scholar
  43. Oxford University Press, Oxford, 1991.
     Google Scholar
  44. L. Esteva and C. Vargas, ”Analysis of a dengue disease transmission
     Google Scholar
  45. model”, Mathematical biosciences, vol. 150(2), pp.131–151, 1998.
     Google Scholar
  46. G. Cruz-Pacheco, L. Esteva, J. A. Montano-Hirose, C. Vargas, ˜
     Google Scholar
  47. ”Modelling the dynamics of West Nile Virus”, Bulletin
     Google Scholar
  48. of mathematical biology, vol. 67(6), pp. 1157–1172, 2005.
     Google Scholar
  49. https://doi.org/10.1016/j.bulm.2004.11.008
     Google Scholar
  50. B. Traore, B. Sangar ´ e, S. Traor ´ e, ”A Mathematical Model of Malaria ´
     Google Scholar
  51. Transmission with Structured Vector Population and Seasonality”, Journal of Applied Mathematics, vol. 2017, Article ID 6754097, 15 pages,
     Google Scholar
  52. https://doi.org/10.1155/2017/6754097
     Google Scholar
  53. Lassa Fever, ”Emergencies preparedness, response”, 2020
     Google Scholar
  54. https://www.who.int/csr/don/20-february-2020-lassa-fever-nigeria/en/
     Google Scholar
  55. P. Van den Driessche, and J. Watmough, ”Reproduction numbers and
     Google Scholar
  56. sub-threshold endemic equilibria for compartmental models of diseases
     Google Scholar
  57. transmission”, Mathematical Biosciences, vol. 180, pp. 29–48, 2002.
     Google Scholar
  58. J. Lassale, and S. Lefschetz, ”The stability of dynamical system”, SIAM
     Google Scholar
  59. Philadelphia, 2010.
     Google Scholar
  60. O. S. Obabiyi, and A. O. Akindele, ”Mathematical model for lassa
     Google Scholar
  61. fever transmission with variable human and reservoir Population”,
     Google Scholar
  62. International Journal of Differential Equation and Applications, vol.
     Google Scholar
  63. (1), pp. 67–91, 2017.
     Google Scholar
  64. S. O. Adewale, I. A. Olapade, S. O. Ajao, G. A. Adeniran, and O. T.
     Google Scholar
  65. Oyademi, ”Mathematical Analysis of Lassa Fever Model with Isolation.
     Google Scholar
  66. Asian Journal of Natural & Applied Sciences”, vol. 5(3), pp. 47–57,
     Google Scholar

  67.  Google Scholar
  68. J. Lasalle. ”The stability of dynamical systems” Philadelphia: SIAM,
     Google Scholar

  69.  Google Scholar
  70. E. A. Bakare, E. B. Are, O. E. Abolarin, S. A. Osanyinlusi, Benitho
     Google Scholar
  71. Ngwu, Obiaderi N. Ubaka, ”Mathematical Modelling and Analysis of Transmission Dynamics of Lassa Fever”, Journal of Applied Mathematics, vol. 2020, Article ID 6131708, 18 pages, 2020.
     Google Scholar
  72. https://doi.org/10.1155/2020/6131708
     Google Scholar