A Mathematical Model For Lassa Fever Transmission Dynamics With Impacts of Control Measures: Analysis And Simulation
##plugins.themes.bootstrap3.article.main##
Lassa Fever, caused by Lassa virus, is a vector-host transmitted infectious disease whose prevalence has been on the upsurge over the past few decades. Thus, considering the grave implications of the continuous spread of the disease, an epidemic model was developed to describe the disease transmission dynamics with impacts of proposed control measures. This is to help inform effective control strategies that would successfully curtail and contain the disease in its endemic areas. The model is qualitatively analyzed in order to contextualize the long run behavior of the model while the model associated basic reproduction number $(\mathcal{R}_0)$ is derived. The model analysis reveals that the disease-free equilibrium is locally and globally stable whenever $ \mathcal{R}_0 < 1 $ and the disease prevalence would be high as long as $ \mathcal{R}_0 > 1 $. Finally, the model is numerically solved and simulated for different scenarios of the disease outbreaks while the findings from simulations are discussed.
References
-
F. Brauer, C. Castillo-Chavez, A. Mubayi, S. Towers, ”Some models for
Google Scholar
1
-
epidemics of vector-transmitted diseases”, Infectious Disease Modelling,
Google Scholar
2
-
KeAi Advancing Research Evolving Science, vol. 1(2016), pp.79–87,
Google Scholar
3
-
http://dx.doi.org/10.1016/j.idm.2016.08.001
Google Scholar
4
-
T. S. Faniran, ”A Mathematical Modelling of Lassa Fever Dynamics
Google Scholar
5
-
with Non-drug Compliance Rate”, International Journal of Mathematics
Google Scholar
6
-
Trends and Technology, vol. 47(5), pp. 305–318, 2017.
Google Scholar
7
-
I. S. Lukashevich, ”The Search for Animal Models for Lassa Vaccine
Google Scholar
8
-
Development”, National Institutes of Health, vol. 12(1), pp.71–86, 2013.
Google Scholar
9
-
D. Omale and T. E. Edibo, ”Mathematical Models for Lassa Fever
Google Scholar
10
-
Transmission with Control Strategies”, Computing, Information System,
Google Scholar
11
-
Development Informatics & Allied Research Journal, vol.6(4), pp. 25–
Google Scholar
12
-
, 2015.
Google Scholar
13
-
S. Usman. and I. Isa Adamu, ”Modelling the Transmission Dynamics
Google Scholar
14
-
of the Lassa Fever Infection”,IISTE, vol.8(5), pp.42–63, 2018.
Google Scholar
15
-
J. O. Akanni and A. D. Adedipo, ”Sensitive Analysis of the Dynamical
Google Scholar
16
-
Transmission and Control of Lassa Fever Virus”, Asian Research Journal
Google Scholar
17
-
of Mathematics, vol. 9(3), pp. 1–11, 2018.
Google Scholar
18
-
M. M. Ojo, and F. O. Akinpelu, ”Lyapunov Functions and Global Properties of SEIR Epidemic Model”, International Journal of Chemistry,
Google Scholar
19
-
Mathematics and Physics, vol.1(1), pp.11–16, 2017.
Google Scholar
20
-
B. I. Eraikhuemen and O. Eguasa,”Lassa fever and its Control Measures”, Journal of Natural Sciences Research,vol. 7(12), pp. 75–79, 2017.
Google Scholar
21
-
Lassa Fever Outbreak Situation Report, ”Nigeria Center For Disease
Google Scholar
22
-
Control”, [Cited 2019 Mar 11]. http://www.ncdc.gov.ng serial number:04.
Google Scholar
23
-
L. Cai and X. Li, ”Analysis of a Simple Vector-Host Epidemic Model with Direct Transmission”, Discrete Dynamics in Nature and Society, vol. 2010, Article ID 679613, 12 pages, 2010.
Google Scholar
24
-
https://doi.org/10.1155/2010/679613
Google Scholar
25
-
W. O. Kermack, and A. G. McKendrick, ”A contribution to the mathematical theory of epidemics”,Proc. Roy. Soc. London, vol. 115, pp.
Google Scholar
26
-
–721, 1927.
Google Scholar
27
-
J B McCormick, I J King, P A Webb, C L Scribner, R B Craven, K M
Google Scholar
28
-
Johnson, L H Elliott, and R Belmont-Williams, ”Lassa fever. Effective
Google Scholar
29
-
therapy with ribavirin”, N Engl J Med. 1986 vol. 314(1), pp.20-6, 1986.
Google Scholar
30
-
doi:10.1056/NEJM198601023140104, PMID: 3940312.
Google Scholar
31
-
Viral Hemorrhagic Fever (VHFs), ”Centers for Disease Control
Google Scholar
32
-
and Prevention”, [visited march 2019], https://www.cdc.gov/vhf/virusfamilies/arenaviridae.html
Google Scholar
33
-
E. Fichet-Calvet, E. Lecompte, L. Koivogui, B. Soropogui, A. Dore,´
Google Scholar
34
-
F. Kourouma, O. Sylla, S. Daffis, K. Koulemou, and J. Ter Meulen, ´
Google Scholar
35
-
”Fluctuation of abundance and Lassa virus prevalence in Mastomys
Google Scholar
36
-
natalensis in Guinea, West Africa”, Vector Borne Zoonotic Dis., vol.
Google Scholar
37
-
(2), pp. 119–28, 2007. doi:10.1089/vbz.2006.0520, PMID: 17627428.
Google Scholar
38
-
World Health Organization, ”Lassa Fever-fact
Google Scholar
39
-
sheet, reviewed July 2017”, [visited march 2019]
Google Scholar
40
-
http://www.who.int/mediacentre/factsheets/fs179/en/
Google Scholar
41
-
R. M. Anderson and R. M. May, ”Infectious Disease of Humans”,
Google Scholar
42
-
Oxford University Press, Oxford, 1991.
Google Scholar
43
-
L. Esteva and C. Vargas, ”Analysis of a dengue disease transmission
Google Scholar
44
-
model”, Mathematical biosciences, vol. 150(2), pp.131–151, 1998.
Google Scholar
45
-
G. Cruz-Pacheco, L. Esteva, J. A. Montano-Hirose, C. Vargas, ˜
Google Scholar
46
-
”Modelling the dynamics of West Nile Virus”, Bulletin
Google Scholar
47
-
of mathematical biology, vol. 67(6), pp. 1157–1172, 2005.
Google Scholar
48
-
https://doi.org/10.1016/j.bulm.2004.11.008
Google Scholar
49
-
B. Traore, B. Sangar ´ e, S. Traor ´ e, ”A Mathematical Model of Malaria ´
Google Scholar
50
-
Transmission with Structured Vector Population and Seasonality”, Journal of Applied Mathematics, vol. 2017, Article ID 6754097, 15 pages,
Google Scholar
51
-
https://doi.org/10.1155/2017/6754097
Google Scholar
52
-
Lassa Fever, ”Emergencies preparedness, response”, 2020
Google Scholar
53
-
https://www.who.int/csr/don/20-february-2020-lassa-fever-nigeria/en/
Google Scholar
54
-
P. Van den Driessche, and J. Watmough, ”Reproduction numbers and
Google Scholar
55
-
sub-threshold endemic equilibria for compartmental models of diseases
Google Scholar
56
-
transmission”, Mathematical Biosciences, vol. 180, pp. 29–48, 2002.
Google Scholar
57
-
J. Lassale, and S. Lefschetz, ”The stability of dynamical system”, SIAM
Google Scholar
58
-
Philadelphia, 2010.
Google Scholar
59
-
O. S. Obabiyi, and A. O. Akindele, ”Mathematical model for lassa
Google Scholar
60
-
fever transmission with variable human and reservoir Population”,
Google Scholar
61
-
International Journal of Differential Equation and Applications, vol.
Google Scholar
62
-
(1), pp. 67–91, 2017.
Google Scholar
63
-
S. O. Adewale, I. A. Olapade, S. O. Ajao, G. A. Adeniran, and O. T.
Google Scholar
64
-
Oyademi, ”Mathematical Analysis of Lassa Fever Model with Isolation.
Google Scholar
65
-
Asian Journal of Natural & Applied Sciences”, vol. 5(3), pp. 47–57,
Google Scholar
66
-
Google Scholar
67
-
J. Lasalle. ”The stability of dynamical systems” Philadelphia: SIAM,
Google Scholar
68
-
Google Scholar
69
-
E. A. Bakare, E. B. Are, O. E. Abolarin, S. A. Osanyinlusi, Benitho
Google Scholar
70
-
Ngwu, Obiaderi N. Ubaka, ”Mathematical Modelling and Analysis of Transmission Dynamics of Lassa Fever”, Journal of Applied Mathematics, vol. 2020, Article ID 6131708, 18 pages, 2020.
Google Scholar
71
-
https://doi.org/10.1155/2020/6131708
Google Scholar
72
Most read articles by the same author(s)
-
Tunde Tajudeen Yusuf,
On Global Stability of Disease-Free Equilibrium in Epidemiological Models , European Journal of Mathematics and Statistics: Vol. 2 No. 3 (2021)