##plugins.themes.bootstrap3.article.main##

The main theorem of the paper states that every stable random vector with marginal skewness parameters different from ±1 can be turned into a sub-Gaussian random vector by using an appropriately tailored transformation in multidimensional space. The theorem is used to create a formula on probability density function of stable random vector and to perform a procedure of testing the stable distribution of multivariate data. A dataset collected from the Nasdaq stock market is used to illustrate the proposed procedure.

References

  1. Markowitz HM. Portfolio selection, The Journal of Finance 1952; 7 (1): 77-91.
     Google Scholar
  2. Ross S. The arbitrage theory of capital asset pricing, Journal of Economic Theory 1976; 13 (3): 341-360.
     Google Scholar
  3. Sharpe WF. Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance 1964; 19 (3): 425-442.
     Google Scholar
  4. Fama E. The behavior of stock prices, Journal of Business 1965; 38: 34-105.
     Google Scholar
  5. Samuelson P. Efficient portfolio selection for Pareto - Lévy investments, Journal of Financial and Quantitative Analysis 1967; 2: 107-117.
     Google Scholar
  6. Kunst RM. Apparently stable increments in finance data: Could ARCH effects be the cause?, J. Statist. Comput. Simulation 1993; 45: 121-127.
     Google Scholar
  7. McCulloch JH. Financial applications of stable distributions. In: Handbook of Statistics 14. Maddala G, Rao C. Eds. North-Holland: Elsevier Science Publishers; 1996, 393-425.
     Google Scholar
  8. Taqqu MS. The modeling of Ethernet data and of signals that are heavy-tailed with infinite variance, Scand. J. Statist. 2002; 829: 273-295.
     Google Scholar
  9. Palmer KJ, Ridout MS, Morgan BJT. Modeling cell generation times using the tempered stable distribution, Journal of the Royal Statistical Society 2008; 57, Series C, 379-397.
     Google Scholar
  10. Adler RJ, Feldman RE, Taqqu MS. A Practical Guide to Heavy Tailed Data. Boston: Birkhauser; 1998.
     Google Scholar
  11. Lamantia F, Ortobelli S, Rachev S. VaR, CVaR and Time Rules with Elliptical and Asymmetric Stable Distributed Returns, Investment Management and Financial Innovations 2006; 3(4): 19-39.
     Google Scholar
  12. Resnik SI. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. New York: Springer, 2007.
     Google Scholar
  13. Majoros S, Zempléni A. Multivariate stable distributions and their application in modeling returns. Stat. AP 2018, arXiv:1810.09521.
     Google Scholar
  14. McCulloch JH. Simple consistent estimators of stable distribution parameters, Commun. Statist. Simul. 1986; 15: 1109-1136.
     Google Scholar
  15. Kogon SM, Williams DB. Characteristic function based estimation of stable parameters. In: A Practical Guide to Heavy Tailed Data. Adler R, Feldman R, Taqqu M Eds. Boston, MA: Birkhauser; 1998, 311-335.
     Google Scholar
  16. Nolan JP. Stable Distributions - Models for Heavy Tailed Data. Boston, MA, USA: Birkhauser, 2016.
     Google Scholar
  17. Samorodnitsky G, Taqqu MS. Stable Non-Gaussian Random Processes, New York, NY: Chapman & Hall, 1994.
     Google Scholar
  18. Sklar A. Fonctions de repartition à n dimensions et leurs marges, Publications de l'Institut de Statistique de l'Universitè de Paris 1959; 8: 229-231.
     Google Scholar
  19. Embrechts P, Lindskog F, McNeil A. Modeling Dependence with Copulas and Applications to Risk Management. In: Handbook of Heavy Tailed Distributions in Finance. Rachev S Ed. Elsevier, 2003, Chapter 8, pp. 329--84.
     Google Scholar
  20. Genest C, Rivest LP. Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 1993; 88: 1034-1043.
     Google Scholar
  21. Genest C, Quessy JF, Rémillard B. Goodness-of-fit procedures for copula models based on the probability integral transformation, Scand. J. Statist. 2006; 33: 337-66.
     Google Scholar
  22. Omelchenko V. Parameter estimation of sub-Gaussian stable distributions, Kybernetika 2014; 50 (6): 929—949.
     Google Scholar
  23. Nelsena RB, Quesada-Molina JJ, Rodriguez-Lallena JA, Ubeda-Flores M. Kendall distribution functions, Statistics & Probability Letters 2003; 65 (3): 263-268.
     Google Scholar