Stable Distribution of Multivariate Data
##plugins.themes.bootstrap3.article.main##
The main theorem of the paper states that every stable random vector with marginal skewness parameters different from ±1 can be turned into a sub-Gaussian random vector by using an appropriately tailored transformation in multidimensional space. The theorem is used to create a formula on probability density function of stable random vector and to perform a procedure of testing the stable distribution of multivariate data. A dataset collected from the Nasdaq stock market is used to illustrate the proposed procedure.
References
-
Markowitz HM. Portfolio selection, The Journal of Finance 1952; 7 (1): 77-91.
Google Scholar
1
-
Ross S. The arbitrage theory of capital asset pricing, Journal of Economic Theory 1976; 13 (3): 341-360.
Google Scholar
2
-
Sharpe WF. Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance 1964; 19 (3): 425-442.
Google Scholar
3
-
Fama E. The behavior of stock prices, Journal of Business 1965; 38: 34-105.
Google Scholar
4
-
Samuelson P. Efficient portfolio selection for Pareto - Lévy investments, Journal of Financial and Quantitative Analysis 1967; 2: 107-117.
Google Scholar
5
-
Kunst RM. Apparently stable increments in finance data: Could ARCH effects be the cause?, J. Statist. Comput. Simulation 1993; 45: 121-127.
Google Scholar
6
-
McCulloch JH. Financial applications of stable distributions. In: Handbook of Statistics 14. Maddala G, Rao C. Eds. North-Holland: Elsevier Science Publishers; 1996, 393-425.
Google Scholar
7
-
Taqqu MS. The modeling of Ethernet data and of signals that are heavy-tailed with infinite variance, Scand. J. Statist. 2002; 829: 273-295.
Google Scholar
8
-
Palmer KJ, Ridout MS, Morgan BJT. Modeling cell generation times using the tempered stable distribution, Journal of the Royal Statistical Society 2008; 57, Series C, 379-397.
Google Scholar
9
-
Adler RJ, Feldman RE, Taqqu MS. A Practical Guide to Heavy Tailed Data. Boston: Birkhauser; 1998.
Google Scholar
10
-
Lamantia F, Ortobelli S, Rachev S. VaR, CVaR and Time Rules with Elliptical and Asymmetric Stable Distributed Returns, Investment Management and Financial Innovations 2006; 3(4): 19-39.
Google Scholar
11
-
Resnik SI. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. New York: Springer, 2007.
Google Scholar
12
-
Majoros S, Zempléni A. Multivariate stable distributions and their application in modeling returns. Stat. AP 2018, arXiv:1810.09521.
Google Scholar
13
-
McCulloch JH. Simple consistent estimators of stable distribution parameters, Commun. Statist. Simul. 1986; 15: 1109-1136.
Google Scholar
14
-
Kogon SM, Williams DB. Characteristic function based estimation of stable parameters. In: A Practical Guide to Heavy Tailed Data. Adler R, Feldman R, Taqqu M Eds. Boston, MA: Birkhauser; 1998, 311-335.
Google Scholar
15
-
Nolan JP. Stable Distributions - Models for Heavy Tailed Data. Boston, MA, USA: Birkhauser, 2016.
Google Scholar
16
-
Samorodnitsky G, Taqqu MS. Stable Non-Gaussian Random Processes, New York, NY: Chapman & Hall, 1994.
Google Scholar
17
-
Sklar A. Fonctions de repartition à n dimensions et leurs marges, Publications de l'Institut de Statistique de l'Universitè de Paris 1959; 8: 229-231.
Google Scholar
18
-
Embrechts P, Lindskog F, McNeil A. Modeling Dependence with Copulas and Applications to Risk Management. In: Handbook of Heavy Tailed Distributions in Finance. Rachev S Ed. Elsevier, 2003, Chapter 8, pp. 329--84.
Google Scholar
19
-
Genest C, Rivest LP. Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 1993; 88: 1034-1043.
Google Scholar
20
-
Genest C, Quessy JF, Rémillard B. Goodness-of-fit procedures for copula models based on the probability integral transformation, Scand. J. Statist. 2006; 33: 337-66.
Google Scholar
21
-
Omelchenko V. Parameter estimation of sub-Gaussian stable distributions, Kybernetika 2014; 50 (6): 929—949.
Google Scholar
22
-
Nelsena RB, Quesada-Molina JJ, Rodriguez-Lallena JA, Ubeda-Flores M. Kendall distribution functions, Statistics & Probability Letters 2003; 65 (3): 263-268.
Google Scholar
23