##plugins.themes.bootstrap3.article.main##

Let $\Delta_{g}$ be the Laplace Beltrami operator on a manifold $M$ with Dirichlet (resp.,
Neumann) boundary conditions. We compare the spectrum of on a Riemannian manifold 
for Neumann boundary condition and Dirichlet boundary condition . Then we construct an
effective method of obtaining small eigenvalues for Neumann's problem.

 

References

  1. Lablée O. Spectral Theory in Riemannian Geometry. European Mathematical Society. 2015.
     Google Scholar
  2. Courant R, Hilbert D. Methods of Mathematical Physics. Wiley-VCH. 1989.
     Google Scholar
  3. Petersen P. Riemannian Geometry. New York: Springer Science & Business Media. 2013.‏‏
     Google Scholar
  4. Davies EB. Spectral Theory and Differential Operators. Cambridge University Press. 1996; 42.‏
     Google Scholar
  5. Yaiza C. Analysis on Manifolds via the Laplacian. Harvard University. Lecture Notes. Available from: http://www.math.harvard.edu/canzani/docs/Laplacian
     Google Scholar
  6. Chavel I. Eigenvalues in Riemannian Geometry. Academic Press. 1984.
     Google Scholar
  7. Rosenberg S. The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. Cambridge University Press. 1997; 31.
     Google Scholar
  8. Craioveanu M, Puta M, Rassias TM. Old and New Aspects in Spectral Geometry. Netherlands: Springer, 2010.
     Google Scholar
  9. Local and Global Analysis of Eigenfunctions on Riemannian Manifolds. Handbook of Geometric Analysis. 2008.
     Google Scholar
  10. Bérard PH. Spectral Geometry: Direct and Inverse Problems. Berlin, Heidelberg: Springer Publishing. 1986.
     Google Scholar