##plugins.themes.bootstrap3.article.main##

In this paper, we study the existence of infinitely many weak solutions for problems involving both p(x)-Laplacian and p(x)- Biharmonic operators. In the proof of our main result, we use variational methods and the known symmetric mountain pass lemma.

References

  1. Zhikov VV. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 1987; 9(1): 33-66. Available from: https://iopscience.iop.org/article/10.1070/IM1987v029n01ABEH000958/pdf.
     Google Scholar
  2. Ruzicka M. Electrortheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000.
     Google Scholar
  3. Chen Y, Levine S, Rao M. Variable exponent linear growth functionals in image restoration. SIAM J. Appl. Math. 2006; 66(4): 1383-1406. doi:10.1137/050624522.
     Google Scholar
  4. Harjulehto P, Ha ̈sto ̈ P, Latvala V. Minimizers of the variable exponent, non-uniformly convex Dirichlet energy. J. Math. Pures Appl. 2008; 89(2): 174-19. doi: 10.1016/j.matpur.2007.10.006.
     Google Scholar
  5. El Khalil A, Kellati S, Touzani A. On the spectrum of the p-biharmonic operator. Electron. J. Differ. Equ. Conference 09. 2002; 161-170.
     Google Scholar
  6. Ayoujil A, EI Amrouss AR Continuous spectrum of a fourth order nonhomogeneous elliptic equation. Electron. J. Differ. Equ. 2011; 24: 1-12.
     Google Scholar
  7. Kong L. On a fourth order elliptic problem with a p(x)-biharmonic operator. Appl. Math. Lett. 2014; 27: 21-25. doi: 10.1016/j.aml.2013.08.007.
     Google Scholar
  8. Kefi K, Ra ̆dulescu VD. On a p(x)-biharmonic problem with singular weights. Zeitschrift fu ̈r angewandte Mathematik und Physik. 2017; 68(4): 1-13. doi:10.1007/s00033-017-0827-3.
     Google Scholar
  9. Laghzal M, Touzani A. Existence of infinitely many eigengraph sequences of the p(.)-biharmonic equation. MATEMATICKI VESNIK. 2021; 73(2): 88-100. Available from: http://elib.mi.sanu.ac.rs/files/journals/mv/283/mvn283p88-100.pdf.
     Google Scholar
  10. Kajikia R, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal. 2005; 225(2): 352-370. doi: 10.1016/j.jfa.2005.04.005.
     Google Scholar
  11. Kovacik O, Rakosuik J. On spaces Lp(x)(Ω) and Wm,p(x)(Ω). Czechoslovak Math. J. 1991; 41(116): 592-618.
     Google Scholar
  12. Fan XL, Zhao D. On the space Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001; 263(2): 424-446.
     Google Scholar
  13. Fan XL, Zhang QH. Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal. Theory Methods Appl. 2003; 52(8): 1843-1852. doi:10.1016/S0362-546X(02)00150-5.
     Google Scholar
  14. Fan XL, Han X. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN . Nonlinear Anal. Theory Methods Appl. 2004; 59(1-2):173-188. doi: 10.1016/j.na.2004.07.009.
     Google Scholar
  15. Edmunds D, Ra ́kosn ́ık J. Sobolev embeddings with variable exponent. Stud. Math. 2000; 3(143): 267-293. Available from:
     Google Scholar
  16. http://matwbn.icm.edu.pl/ksiazki/sm/sm143/sm14334.pdf.
     Google Scholar
  17. Ayoujil A, EI Amrouss AR. On the spectrum of a fourth order elliptic equation with variable exponent. Nonlinear Anal. Theory Methods Appl. 2009; 71(10): 4916-4926. doi: 10.1016/j.na.2009.03.074.
     Google Scholar
  18. El Khalil A, Morchid Alaoui MD, Touzani A. On the Spectrum of problems involving both p(x)- Laplacian and p(x)-Biharmonic. Advances in Science, Technology and Engineering Systems Journal. 2017; 2(5): 134-140. Available from: https://pdfs.semanticscholar.org/492f/a345bdad24084f1607021f2d84ed62d26fe3.pdf.
     Google Scholar
  19. Fan XL, Fan X. A Knobloch-type result for p(t)-Laplacian systems. Journal of mathematical analysis and applications. 2003; 282(2): 453-464. doi:10.1016/S0022-247X(02)00376-1.
     Google Scholar
  20. Laghzal M, El Khalil A, Touzani A. A Weighted Eigenvalue Problems Driven by both p(.)- Harmonic and p(.)-Biharmonic Operators. Communications in Mathematics. 2020; 29(3): 443-455. Available from: https://hal.archives-ouvertes.fr/hal-03664984/document.
     Google Scholar
  21. Ge B, Zhou QM, Wu YH. Eigenvalues of the p(x)-biharmonic operator with indefinite weight. Zeitschrift fu ̈r angewandte Mathematik und Physik. 2015; 66(3): 1007-1021. doi: 10.1007/s00033-014-0465-y.
     Google Scholar
  22. Taarabti S, El Allali Z, Hadddouch KB. Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions. Bol. Soc. Paran. Mat. 2018; 36: 195-213. Available from: http://www.spm.uem.br/bspm/pdf/vol36-1/Art12.pdf.
     Google Scholar