Infinitely Many Weak Solutions for Problems Involving Both p(x)-Laplacian and p(x)-Biharmonic Operators
##plugins.themes.bootstrap3.article.main##
In this paper, we study the existence of infinitely many weak solutions for problems involving both p(x)-Laplacian and p(x)- Biharmonic operators. In the proof of our main result, we use variational methods and the known symmetric mountain pass lemma.
References
-
Zhikov VV. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 1987; 9(1): 33-66. Available from: https://iopscience.iop.org/article/10.1070/IM1987v029n01ABEH000958/pdf.
Google Scholar
1
-
Ruzicka M. Electrortheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000.
Google Scholar
2
-
Chen Y, Levine S, Rao M. Variable exponent linear growth functionals in image restoration. SIAM J. Appl. Math. 2006; 66(4): 1383-1406. doi:10.1137/050624522.
Google Scholar
3
-
Harjulehto P, Ha ̈sto ̈ P, Latvala V. Minimizers of the variable exponent, non-uniformly convex Dirichlet energy. J. Math. Pures Appl. 2008; 89(2): 174-19. doi: 10.1016/j.matpur.2007.10.006.
Google Scholar
4
-
El Khalil A, Kellati S, Touzani A. On the spectrum of the p-biharmonic operator. Electron. J. Differ. Equ. Conference 09. 2002; 161-170.
Google Scholar
5
-
Ayoujil A, EI Amrouss AR Continuous spectrum of a fourth order nonhomogeneous elliptic equation. Electron. J. Differ. Equ. 2011; 24: 1-12.
Google Scholar
6
-
Kong L. On a fourth order elliptic problem with a p(x)-biharmonic operator. Appl. Math. Lett. 2014; 27: 21-25. doi: 10.1016/j.aml.2013.08.007.
Google Scholar
7
-
Kefi K, Ra ̆dulescu VD. On a p(x)-biharmonic problem with singular weights. Zeitschrift fu ̈r angewandte Mathematik und Physik. 2017; 68(4): 1-13. doi:10.1007/s00033-017-0827-3.
Google Scholar
8
-
Laghzal M, Touzani A. Existence of infinitely many eigengraph sequences of the p(.)-biharmonic equation. MATEMATICKI VESNIK. 2021; 73(2): 88-100. Available from: http://elib.mi.sanu.ac.rs/files/journals/mv/283/mvn283p88-100.pdf.
Google Scholar
9
-
Kajikia R, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal. 2005; 225(2): 352-370. doi: 10.1016/j.jfa.2005.04.005.
Google Scholar
10
-
Kovacik O, Rakosuik J. On spaces Lp(x)(Ω) and Wm,p(x)(Ω). Czechoslovak Math. J. 1991; 41(116): 592-618.
Google Scholar
11
-
Fan XL, Zhao D. On the space Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001; 263(2): 424-446.
Google Scholar
12
-
Fan XL, Zhang QH. Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal. Theory Methods Appl. 2003; 52(8): 1843-1852. doi:10.1016/S0362-546X(02)00150-5.
Google Scholar
13
-
Fan XL, Han X. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN . Nonlinear Anal. Theory Methods Appl. 2004; 59(1-2):173-188. doi: 10.1016/j.na.2004.07.009.
Google Scholar
14
-
Edmunds D, Ra ́kosn ́ık J. Sobolev embeddings with variable exponent. Stud. Math. 2000; 3(143): 267-293. Available from:
Google Scholar
15
-
http://matwbn.icm.edu.pl/ksiazki/sm/sm143/sm14334.pdf.
Google Scholar
16
-
Ayoujil A, EI Amrouss AR. On the spectrum of a fourth order elliptic equation with variable exponent. Nonlinear Anal. Theory Methods Appl. 2009; 71(10): 4916-4926. doi: 10.1016/j.na.2009.03.074.
Google Scholar
17
-
El Khalil A, Morchid Alaoui MD, Touzani A. On the Spectrum of problems involving both p(x)- Laplacian and p(x)-Biharmonic. Advances in Science, Technology and Engineering Systems Journal. 2017; 2(5): 134-140. Available from: https://pdfs.semanticscholar.org/492f/a345bdad24084f1607021f2d84ed62d26fe3.pdf.
Google Scholar
18
-
Fan XL, Fan X. A Knobloch-type result for p(t)-Laplacian systems. Journal of mathematical analysis and applications. 2003; 282(2): 453-464. doi:10.1016/S0022-247X(02)00376-1.
Google Scholar
19
-
Laghzal M, El Khalil A, Touzani A. A Weighted Eigenvalue Problems Driven by both p(.)- Harmonic and p(.)-Biharmonic Operators. Communications in Mathematics. 2020; 29(3): 443-455. Available from: https://hal.archives-ouvertes.fr/hal-03664984/document.
Google Scholar
20
-
Ge B, Zhou QM, Wu YH. Eigenvalues of the p(x)-biharmonic operator with indefinite weight. Zeitschrift fu ̈r angewandte Mathematik und Physik. 2015; 66(3): 1007-1021. doi: 10.1007/s00033-014-0465-y.
Google Scholar
21
-
Taarabti S, El Allali Z, Hadddouch KB. Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions. Bol. Soc. Paran. Mat. 2018; 36: 195-213. Available from: http://www.spm.uem.br/bspm/pdf/vol36-1/Art12.pdf.
Google Scholar
22