Enumeration of Triangles and Hamiltonian Property of The Zero-Divisor Cayley Graph of The Ring G(Zₙ,⊕,⊙)
##plugins.themes.bootstrap3.article.main##
In this paper an enumeration method to find the number of triangles in the zero-divisor Cayley graph G(Zₙ,D₀ ) associated with the ring (Zₙ,⨁,⨀),n≥1 of integers modulo n, an integer and its subset D0 of zero-divisors is presented. Further it is shown that this graph is Hamiltonian, not bipartite and Eulerian graph when n is odd.
References
-
Nathanson MB. Components of Arithmetic graphs. Monatsheftefu ̈r Mathematik. 1980; 29: 219-220.
Google Scholar
1
-
Dejter IJ, Giudici RE. On unitary Cayley graphs. JCMCC. 1995; 18: 121-124.
Google Scholar
2
-
Bierrizbeitia P, Giudici RE. Counting pure k-cycles in sequences of Cayley graphs. Discrete Math. 1996; 149: 11-18.
Google Scholar
3
-
Bierrizbeitia P, Giudici RE. On cycles in the sequence of unitary Cayley graphs. Reports Techico No. 01-95, Universidad Simon Bolivear, Depto. De Mathematics, Caracas, Venezuela. 1995.
Google Scholar
4
-
Madhavi L. Studies on domination parameters and Enumeration of cycles in some arithmetic graphs, Ph.D Thesis, Sri Venkateswara University, India. 2003.
Google Scholar
5
-
Chalapati T, Madhavi L. Enumeration of Triangles in a Divisor Cayley Graph. Momona Ethiopian Journal of Science, 2013; V(5) :163-173.
Google Scholar
6
-
Maheswari B, Madhavi L. Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley Graphs, Graph Theory Notes of New York LIX. 2010; 28-31.
Google Scholar
7
-
Maheswari B. Madhavi L. Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs. Chamchuri Journal of Mathematics. 2009; 1: 95-103.
Google Scholar
8
-
Beck I. Coloring of commutative rings. J. Algebra. 1998; 116: 208-206.
Google Scholar
9
-
Anderson D, Naseer M. Beck’s Coloring of Commutative Ring. J. Algebra. 1993; 159: 500-514.
Google Scholar
10
-
Anderson DF, Livingston PS. The zero-divisor graph of commutative ring. J. Algebra. 1999; 217: 434-447.
Google Scholar
11
-
Smith NO. Planar Zero-Divisor Graph. International Journal of Commutative Rings. 2002; 2(4): 177-188.
Google Scholar
12
-
Tongsuo W. On Directed Zero-Divisor Graphs of Finite Rings. Discrete Mathematics. 2005; 296(1): 73-86.
Google Scholar
13
-
Devendra J. Nagalakshumma T, Madhavi L. The radius, diameter, girth and circumference the of zero-divisor Cayley graph of the residue class ring (Z_n,⨁,⨀). IOSR Journal of Mathematics. 2019; 15(4): 58-63.
Google Scholar
14
-
Devendra J. Madhavi L, Nagalakshumma T. The zero-divisor Cayley graph of the residue class ring (Z_n,⨁,⨀). Malaya Journal of Mathematik. 2019; 7(3): 590-594.
Google Scholar
15
-
Madhavi L, Devendra J, Nagalakshumma T. The zero-divisor Cayley graph of the residue class ring (Z_n,⨁,⨀). Journal of Computer and Mathematical Sciences. 2019; 10(9): 1589-1567.
Google Scholar
16
-
Bondy JA, Murty USR. Graph Theory with Applications. Macmillan, London. 1979: 290.
Google Scholar
17
-
Gallian JA. Contemporary Abstract Algebra. Narosa publishing house, Ninth edition. 2018.
Google Scholar
18
-
Apostol TM. Introduction to Analytic Number Theory. Springer International Student Edition. 1989.
Google Scholar
19
-
Livingston PS. structure in zero-divisor Graphs of commutative rings. M. S. Thesis, The University of Tennessee, Knoxville, TN; 1997.
Google Scholar
20