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Abstract — Schistosomiasis commonly known as bilharzia is regarded by W.H.O as a neglected tropical disease. It 
affects the intestines and the urinary system preferentially, but can harm other systems in the body. The disease is a 
health concern among majority of the population in Mwea irrigation scheme in Kenya and indeed other tropical 
countries. This paper documents a deterministic analysis of the effectiveness of non-clinical approaches in the control 
of transmission of schistosomiasis in the region. A SIR based mathematical model that incorporates media campaigns 
as a control strategy of reducing transmission of the disease is used. The model considers behavior patterns of hosts 
as the main process of transmission of the disease. The dynamics of these processes is expressed in terms of ordinary 
differential equations deduced from the human behavior patterns that contribute to the spread of the disease. The 
reproduction number R0 and equilibrium points both DFE and EE are obtained. The stabilities of these equilibrium 
points are analyzed in reference to the reproduction number (R0). Secondary data is used in the mathematical model 
developed and in the prediction of the dynamics estimated in the model for a period of five years. Numerical 
simulation was carried out and results represented graphically. The results of the simulation show that the infection 
decreased from 75108 to about 35000 and the susceptible from 325142 to 50000 respectively in a period of five years. 
From the analysis, the DFE point is asymptotically stable when R_0<1.Sensitivity analysis of parameters was carried 
out using partial differentiation. The results show that the sensitivity index of most parameters are inversely 
proportional to R0 which will reduce schistosomiasis infection. From the results, incorporation of media campaigns 
as a control strategy significantly reduces transmission of the disease. The results will be useful to MOH to enhance 
media campaigns to prevent spread of schistosomiasis in Mwea Irrigation scheme and other endemic areas. 

 
Keywords — Disease free equilibrium and endemic equilibrium, local and global stabilities of equilibrium points, 
reproduction number, Schistosomiasis, sensitivity analysis. 

 

I. INTRODUCTION  

Human Schistosomiasis is the third most devastating tropical diseases in the world after malaria and intestinal helminthiasis 
according to the World Health Organization [37]. Schistosomiasis also referred to as Bilharzia or snail fever. Human 
schistosomiasis is a parasitic disease caused by parasitic worms that infects multiple organs including the liver, intestine, 
bladder and urethra. Clinical manifestations of schistosomiasis include fever and headache. Infection can occur in several sites 
including bile ducts, intestine and bladder. The disease may be eliminated with praziquantel as it is currently the only effective 
treatment of the disease; vaccines and gene therapy are proposed as future treatment plans. kato-katz method and PCR are 
detection tools for people with schistosomiasis. 

Environmental and climatic factors play an important role in the geographical distribution of the disease. In Kenya, 
Schistosomiasis is mainly prevalent around Lake Victoria, Kwale county and Mwea irrigation scheme located in Kirinyaga 
county. The main socio-economic activity in this area is rice growing through irrigation using water from river Thiba and 
Nyamindi. Farmers spend most of their time in the field during the day and there are no toilet facilities in the vast open area in 
the paddies therefore water canals are the most likely places for defecation [21]. 

A study conducted in all primary schools in Mwea Division by Eastern and Southern Africa Center for International Parasite 
Control (ESACIPAC), indicated an overall prevalence of 36% in Schistosoma mansoni with more than 50% of schools within 
the irrigation area demonstrating infection rate of 50% and above in S. mansoni infection. School-age children therefore form 
a high risk group for soil transmitted helminths infections and schistosomiasis. Movements of people from rural to urban areas 
can cause the spread of schistosomiasis, seasonal migration of employees and refugees can also lead to outbreaks of the disease 
[23]. 
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II. MODEL ANALYSIS  

A. Model Description  
In our model the total population is divided into five compartments depending on the epidemiological status of individuals; 

these include susceptible S (t), symptomatically infected I (t), recovered R (t), susceptible exposed to media 𝑆!  (t) and have 
avoided infection, level of snail concentration in contaminated water B (t). The susceptible population increases due to the 
incoming of individuals who come into contact with contaminated water at the rate of Λ" and recovered individuals who join 
susceptible class at the rate of . The parameters and their descriptions are given in Table II. The assumptions of the model 
include, the total population of individuals is not constant, controls are implemented continuously, treatment is introduced to 
the infected population, awareness leads to the reduction in new infections and re-infections, individuals in each compartment 
are homogenously mixing with each other and on recovery there is temporary immunity. Fig. 1 represent flow of the model 
where arrows represent movement of individuals from one compartment to the next and dotted arrows show the effect of media 
campaigns. 

 
Fig. 1. Schematic flow chart of Schistosomiasis model. 

Model equations from the flow chart 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

#$
#%
= Λ" + τR − ,µ& + 𝜆"/S − δS

#'
#%
= 𝜆𝑆 + (1 − 𝜖)𝜆"𝑆( − (𝛼 + 𝜇' + 𝜎)𝐼	

#)
#%
= 𝛼𝐼 − (𝜇) + 𝜏)𝑅

#*!
#%

= 𝛿𝑆 − 𝜇*!𝑆( − (1 − 𝜖)𝜆"𝑆(
#+
#%
= Λ,	 + (1 − 𝜖)𝜃𝐼 − (𝜇* +𝜔)𝐵

          (1) 

 

B. Boundedness 
The model monitors dynamics of a disease involving human population hence it is important to show the limits within which 

the population lies. The carrying capacity in this case is the total of the equations with human population N.  
 

#.
#%
= 𝛬" − (𝜇/𝑆 + 𝜇'𝐼 + 𝜇)𝑅 + 𝜇*!𝑆(      (2)  

Taking the derivatives of total population along the solution path we obtain #.
#%
+ 𝜇𝑁 ≥ Λ" After integrating (2) we obtain: 

 
𝑁 ≥ 0"

1
+𝐾𝑒21%                       (3)  

 
where K is a constant of integration  
 
But(𝑆 + 𝐼 + 𝑅 + 𝑆()) is N then When t=0 (𝑆 + 𝐼 + 𝑅 + 𝑆() ≥ 𝐾 Where K is a constant hence 𝑁 ≥ 𝐾. 

C. Positivity 
Positivity is obtained by letting	𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐵(𝑡) to be any solutions of a system of equations with non-negative initial 

conditions𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0, 𝐵(0) ≥ 0. We solve (1) we obtain  
 

#$
#%
≥ −,𝜇/ + 𝜆 + 𝛿/𝑆          (4)  

t
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Integrating equation (4) by separation of variables we obtain #$

4
≥ −,µ& + λ + δ/dt , 𝑆(𝑡) ≥ 𝐻ℯ256#7879:; .Where H is a 

constant. When	𝑡 = 0,𝑆(0) ≥ 𝐻ℯ256#7879:< 	≥ 0	(hence positive). We solve the other equations. 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

#'
#%
≥ −(𝛼 + 𝜇' + 𝛿)𝐼, 𝐼(0) ≥ 𝐾ℯ2(>71$7?)< ≥ 0	,
#)
#%
≥ −(𝜇) + 𝜏)𝑅	, 𝑅(0) ≥ 𝐷𝑒2(1%7@)< ≥ 0

#*!
#%

≥ −𝜇*!𝑆( − (1 − 𝜖)𝜆"𝑆( , 𝑆(	(0) ≥ 𝐺𝑒2A1&!7("2B)CD< ≥ 0
#+
#%
= (1 − 𝜖)𝜃𝐼 − (𝜇* +𝜔)𝐵, 𝐵(0) ≥ 𝐹𝑒2(E71')<	 ≥ 0

	

     (5) 

 
(5) above shows that system 1 remains positive at all time 𝑡 ≥ 0. 

D. Basic Reproduction Number and Disease Free Equilibrium Point  

Disease free equilibrium is obtained by setting model system of equations 1 as #*
#%
= #'

#%
= #)

#%
= #*!

#%
= #+

#%
= 0 and in the 

absence of the disease 𝐼 = 𝐵 = 𝑅 = 0 hence the system of (1) reduces to (6)    
 

Q Λ" − ,µ& + λ/S − δS = 0	
𝛿𝑆 − 𝜇𝑆( − (1 − 𝜖)λ𝑆( = 0

        (6) 

 
Solving the above equations with λ = 0; (6) becomes 
 
𝑆 = F"

56#787G:
, 𝑆< = F"

56#7G:
 , 𝑆(,< = F"G

56#7G:A1&!D
       (7)  

 
Thus the disease free equilibrium point is stated as: 
 

𝐸< = ,𝑆<, 𝐼<, 𝑅<, 𝑆(,< 	𝐵</ S
F"

56#7G:
, 0,0, F"G

56#7G:A1&!D
, 0, T      (8) 

 
In the absence of infection the system will consist of two compartment classes the susceptible and susceptible with media 

information. 
We calculate the basic reproduction number using the next generation operator method by [30]. We use 𝐹 to show matrix 

of new infections and	𝑉 the matrix of transfer of infection. 
 

⎩
⎨

⎧𝐹 = V𝜆"𝑆 +
(1 − 𝜖)𝜆"𝑆(

Λ,	 + (1 − 𝜖)𝜃𝐼
W

𝑉 = V
(𝛼 + 𝜇' + 𝜎)𝐼	
(𝜇* +𝜔)𝐵	

W
          (9)   

The product of F𝑉2" is given as where 𝑉2" is the inverse of 𝑉: 

𝐹𝑉2" = Y
0

I0"J1&!7("2B)GK

51(7G:(1&7E)1&!
("2B)L

(>71$7?)
0

Z        (10) 

The basic reproduction number takes the largest Eigen value of F𝑉2": 
 

R< =
MI√2"7B√LM0"

M>7?71)OG71(ME71&M1&!
         (11) 

 

E. Local Stability of Disease Free Equilibrium Point 
1) Theorem 1 
A DFE point is locally asymptomatically stable if 𝑅< < 1 , otherwise unstable.  
Proof: We compute the Eigen values of the Jacobian matrix of the model (1). The Jacobian- matrix is obtained by 

differentiating each of the equations in the system with respect to	𝑆<, 𝐼<, 𝑅<, 𝑆(<, 𝐵<. 𝜆 = 𝛽𝐵<, 𝐵< = 0 at DFE 𝑬𝟎.  
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𝐽Q* =

⎣
⎢
⎢
⎢
⎢
⎡−,µ& + δ/ 0 𝜏 0 0

0 −(𝛼 + 𝜇' + 𝜎) 0 0 0
0 𝛼 −(𝜇) + 𝜏) 0 0
𝛿 0 0 −𝜇*! 0
0 (1 − 𝜖)𝜃 0 0 −(𝜇$ +𝜔)⎦

⎥
⎥
⎥
⎥
⎤

 

 
The Eigen values of the above matrix aree−𝛼 − 𝜇' − 𝜎,−µR − δ,−𝜇) − 𝜏,−𝜇* −𝜔,−𝜇*! , f 
It is evident that all the Eigen values are negative thus the disease free equilibrium point is locally asymptomatically stable.  

F. Global Stability of Disease Free Equilibrium  
The criteria that is used to determine the condition necessary for global asymptotic stability of the DFE is the Lyapunov 

criterion for stability. To prove the global stability, we state and prove the following theorem. 
1) Theorem and Proof  
The DFE equilibrium model is globally asymptomatically stable if 𝑅<∗ < 1 and unstable if 𝑅<∗ > 1 .We consider a linear 

and logarithmic Lyapunov function for the system of (1) as follows: 
 

𝐺(𝑆, 𝐼, 𝑅, 𝑆!, 𝐵) = 𝑆 − 𝑆T − 𝑆<𝑙𝑛 j *
**
k + 𝑘"𝐼 + 𝑘,𝑅 + 𝑘U𝑆! + 𝑘V𝐵      (12) 

 
A Lyapunov function G satisfies the following conditions to guarantee global asymptomatic stability: 

i) 𝐺,𝑆T, 𝐼T, 𝑅T, 𝑆!T, 𝐵</ = 0 and 𝐺(𝑆, 𝐼, 𝑅, 𝑆!, 𝐵) > 0 for 𝑆, 𝐼, 𝑅, 𝑆!, 𝐵 ≠ 0 

ii) #5*
+,'+,)+,*,+,+*:

#%
= 0 and #(*,',),*,,+)

#%
< 0. 

iii)  
At DFE,	𝐺,𝑆T, 𝐼T, 𝑅T, 𝑆!T, 𝐵</ = 𝑆< − 𝑆T − 𝑆<𝑙𝑛 j*

+

**
k + 𝑘"𝐼< + 𝑘,𝑅T + 𝑘U𝑆!T + 𝑘V𝐵T   (13) 

 
Since 𝐼T = 𝑅T = 𝑆!T = 𝐵< = 0 and 𝑙𝑛1 = 0 𝐺,𝑆T, 𝐼T, 𝑅T, 𝑆!T, 𝐵</ = 0 Condition (I) is satisfied. In the same sense, 𝑆 ≠

𝑆T and 𝐼 ≠ 0, 𝑅 ≠ 0, 𝑆! ≠ 0, 𝐵 ≠ 0 and	𝑙𝑛 j *
**
k ≠ 0, thus 𝐺(𝑆, 𝐼, 𝑅, 𝑆!, 𝐵) > 0  

 
Condition (ii) #(*,',),*,,+)

#%
= #*

#%
(1 − **

*
) + 𝑘"

#'
#%
+ 𝑘,

#)
#%
+ 𝑘U

#*,
#%

+ 𝑘V
#+
#%

     (14)  
 

At DFE #5*
+,'+,)+,*,+,+*:

#%
= 0 Since	𝐼T = 𝑅T = 𝑆!T = 𝐵< = 0, j1 − **

*-
k = 0 hence the condition #(*,',),*,,+)

#%
< 0 will help 

us to ascertain the Global stability of DFE 
Substituting for #*

#%
, #'
#%
, #)
#%
, #*,
#%
, #+
#%

 we have 
 
#(*,',),*,,+)

#%
= (1 − **

*
),Λ" + 𝜏𝑅 − ,𝜇/ + 𝜆/𝑆 − 𝛿𝑆/ + 𝑘"(𝜆𝑆 + (1 − 𝜖)𝜆𝑆! − (𝛼 + 𝜇' + 𝜎)𝐼) + 𝑘,(𝛼𝐼 − (𝜇) + 𝜏)𝑅) +

𝑘U(𝛿𝑆 − 𝜇$!𝑆! − (1 − 𝜖)𝜆𝑆!) + 𝑘V(Λ,𝐵 + (1 − 𝜖)𝜃𝐼 − (𝜇$ +𝜔)𝐵)   (15) 
 
By grouping linear and non-linear terms we obtain the values of 𝑘", 𝑘,, 𝑘U, 𝑘V and and substituting	𝑘" = 1, 𝑘, = 1, 𝑘U =

1	𝑎𝑛𝑑	𝑘V = 0 into the equation (14) and expanding we obtain and putting the positives and negatives together we obtain: 
#(*,',),*,,+)

#%
= Λ" + 𝜏𝑅 + 𝜇/𝑆< + 𝜆𝑆< + 𝛿𝑆< + 𝜆𝑆 + 𝜆𝑆! + 𝛿𝑆 + 𝜖𝜆𝑆! − 𝜇/𝑆 − 𝜆𝑆 − 𝛿𝑆 − Λ"

**

*
− 𝜏𝑅 **

*
− 𝜖𝜆𝑆! − 𝛼𝐼 −

𝜇'𝐼 − 𝜎𝐼 + 𝛼𝐼 − 𝜇)𝑅 − 𝜏𝑅 − 𝜇$!𝑆! − 𝜆𝑆!      (16) 
 
Letting P and Q be positive and negative terms respectively then we have, #(*,',),*,,+)

#%
= 𝑃 − 𝑄 (17). If 𝑄 > 𝑃 then the 

system is globally asymptotically stable otherwise unstable. 

G. Endemic Equilibrium Point 
Endemic equilibrium exists whenever 𝑅< > 1 and it is asymptomatically stable. As 𝑅<increases through one there is an 

exchange of stability between disease free equilibrium and endemic equilibrium point. Endemic equilibrium point is obtained 
by setting the right hand side of the model equations 1 to zero and that ,	𝐵 > 0,	𝐼 > 0,	λ > 0, S > 0 , R > 0. We solve model 
of equations 1 in terms of force of infection	𝜆 = 𝛽𝐵. 𝜆∗ = 𝜆	.	We obtain𝑆∗, 𝐼∗, 𝑅∗, 𝑆(∗, 𝐵∗	. By letting µ/ = µ",	𝜇' = 𝜇V,𝜇*! =
𝜇,,, 	𝜇) = 𝜇U,	𝜇$ = 𝜇W. 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑆∗ = 2>@1.70"(@71/)(>7?710)

5G?2C(,>7?):@71"(@71/)(>7?710)7(G2C)5@1071/(>7?710):

𝐼∗ = 5(G7C)0"2(G2C71")1.:(@71/)

5G?2C(,>7?):@71"(@71/)(>7?710)7(G2C)5@1071/(>7?710):

R∗ = >(G7C)0"2>(G2C71")1.
(G?2C(,>7?))@71"(@71/)(>7?710)7(G2C)(@1071/(>7?710))

𝑆(∗ =
(G0"(@71/)(>7?710)21.((>(G2,C)7(G2C)?)@71"(@71/)(>7?710)7(G2C)(@1071/(>7?710))))

((2"7B)C((,>C7(2G7C)?)@21"(@71/)(>7?710)2(G2C)(@1071/(>7?710))))

𝐵∗ = (2"7B)L0.((G7C)0"2(G2C71")1.)(@71/)
((,>C7(2G7C)?)@21"(@71/)(>7?710)2(G2C)(@1071/(>7?710)))(E711)

  (18) 

 
Using equations 18 we substitute them in the force of infection to obtain	𝜆∗ the force of infection at endemic equilibrium 

point in terms of	𝛽. We obtain two values of 𝜆∗ as: 
 

	𝜆∗" = 𝜌" − 2
)*.

0"
𝜌, + 𝜌V + 𝜌U − 𝑅<	,𝜌,       (19) 

 

	𝜆∗, = 𝜌" − 2
)*.

0"
𝜌, + 𝜌V − 𝜌U − 𝑅<	,𝜌,       (20) 

 
Substituting 𝛽∗ in equations with	𝜆∗" and then substituting	𝜆∗" in (18) we obtain 𝑆∗, 𝐼∗, 𝑅∗, 𝑆(∗, 𝐵∗	 in terms of𝑅<. Let 

	𝜆∗" = 𝜆 and 	𝜆∗" = 𝜉	𝑅<. 
 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑆∗ = '

−𝛼𝜏𝜇" + (𝛼 + 𝜎 + 𝜇#)𝛬$[𝜏 + 𝜇%]
(𝛼 + 𝜎 + 𝜇#)𝜇$[𝜏 + 𝜇%] + (𝛿 − ξR&)(𝜏𝜇# + 𝜇%[𝛼 + 𝜎 + 𝜇#]) + 𝜏(𝛿𝜎 − ξR&[2𝛼 + 𝜎])

7

𝐼∗ = '
(𝜏 + 𝜇%)9−𝜇"(𝛿 + 𝜇$ − ξR&) + 𝛬$(𝛿 + ξR&):

(𝛼 + 𝜎 + 𝜇#)𝜇$[𝜏 + 𝜇%] + (𝛿 − ξR&)(𝜏𝜇# + 𝜇%[𝛼 + 𝜎 + 𝜇#]) + 𝜏(𝛿𝜎 − ξR&[2𝛼 + 𝜎])
7

R∗ = '
−𝜇"𝛼[𝛿 + 𝜇$ − ξR&] + 𝛬$𝛼[𝛿 + ξR&]

(𝛼 + 𝜎 + 𝜇#)𝜇$[𝜏 + 𝜇%] + (𝛿 − ξR&)(𝜏𝜇# + 𝜇%[𝛼 + 𝜎 + 𝜇#]) + 𝜏(𝛿𝜎 − ξR&[2𝛼 + 𝜎])
7

𝑆'∗ = '
𝛿(𝛼 + 𝜎 + 𝜇#)𝛬$[𝜏 + 𝜇%] − 𝜇"[𝜏(𝜎(𝛿 − ξR&) + 𝛼[𝛿 − 2ξR&]) + (𝛼 + 𝜎 + 𝜇#)𝜇$[𝜏 + 𝜇%] + (𝛿 − ξR&)(𝜏𝜇# + 𝜇%[𝛼 + 𝜎 + 𝜇#])]

(−1 + 𝜖)ξR&=𝜏92𝛼ξR& + 𝜎(−𝛿 + ξR&): − (𝛼 + 𝜎 + 𝜇#)𝜇$[𝜏 + 𝜇%] − (𝛿 − ξR&)(𝜏𝜇# + 𝜇%[𝛼 + 𝜎 + 𝜇#])>
7

𝐵∗ = [
(−1 + 𝜖)𝜃(𝜏 + 𝜇%)𝛬"[−𝜇"(𝛿 + 𝜇$ − ξR&) + 𝛬$(𝛿 + ξR&)]

(𝜔 + 𝜇()(𝜏(2𝛼ξR& + 𝜎(−𝛿 + ξR&)) − (𝛼 + 𝜎 + 𝜇#)𝜇$[𝜏 + 𝜇%] − (𝛿 − ξR&)(𝜏𝜇# + 𝜇%[𝛼 + 𝜎 + 𝜇#]))
]

 

(21) 
 
Thus, the endemic equilibrium point is stated as 𝐸∗and exists if 𝑅< > 1. 
 

𝐸∗ = (𝑆∗, 𝐼∗, 𝑅∗, 𝑆(∗, 𝐵∗	) 
 

H. Bifurcation of the Model  
Bifurcation analysis is done using Centre Manifold theory [17]. To apply centre Manifold theory  the change of variables is 

done first for simplicity. Let 𝑆 = 𝑥", 𝐼 = 𝑥,, 𝑅 = 𝑥U, 𝑆( = 𝑥V, 𝐵 = 𝑥W then 𝑁 = 𝑥" + 𝑥, + 𝑥U, +𝑥V + 𝑥W. 
The model can be written as #.

#X
= 𝐹(𝑥) where= (𝑓"	, 𝑓,, 𝑓U, 𝑓V, 𝑓W)	𝜆∗ = 𝛽∗𝐵, where 𝛽∗ is the bifurcation parameter.  

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑓"	 =

#X"
#%
= Λ" + τR − ,µ& + 𝛽∗𝑥W/x" − δx"

𝑓,	 =
#X.
#%
= 𝛽∗𝑥W𝑥" + (1 − 𝜖)𝛽∗𝑥WxV − (𝛼 + 𝜇' + 𝜎)𝑥,
𝑓U	 =

#X/
#%
= 𝛼𝑥, − (𝜇) + 𝜏)𝑥U

𝑓V	 =
#X0
#%
= 𝛿𝑥" − 𝜇*!𝑥V − (1 − 𝜖)𝛽

∗𝑥WxV
𝑓W	 =

#X1
#%
= Λ,	 + (1 − 𝜖)𝜃𝑥, − (𝜇* +𝜔)𝑥W

       (22) 

 
The method entails obtaining the Jacobian of the system of (22) at disease free equilibrium 𝐸< = ,𝑆<, 𝐼<, 𝑅<, 𝑆(,< 	𝐵</ =

S 0"
51(7G:

, 0,0, 0"G
51(7G:A1&!D

, 0, T. 

We consider a case where 𝑅< = 1 ,we take 𝛽 = 𝛽∗ as the bifurcation parameter. Then from 𝑅<∗ = 1 gives 𝛽∗ =
−
(>7?71))(G71()(E71&)1&!
(2"7B)L0"0.(G2GB71&!)

}} the Jacobean of #.
#X
= 𝐹(𝑥) at disease free equilibrium when 𝛽 = 𝛽∗ denoted by 𝐽𝐸∗< with𝛽 = 𝛽∗ 

has the Eigen values: 
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𝐽𝐸∗< = 𝐽𝛽∗ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−µ& − δ 0 0 0 −𝛽∗

Λ"𝛿
,µ& + 𝛿/z𝜇*!{

0 −(𝛼 + 𝜇' + 𝜎) 0 0 0
0 𝛼 −(𝜇) + 𝜏) 0 0

𝛿 0 0 −𝜇*! −𝛽∗
Λ"𝛿

,µ& + 𝛿/z𝜇*!{
0 (1 − 𝜖)𝜃 0 0 (𝜇* +𝜔) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Obtaining the Eigen values the above Jacobean matrix at DFE and obtaining 𝛽 = 𝛽∗ interms of 𝑅<such that 𝑅<𝛽∗ =1. We 
obtain the Eigen values as: 
 

{0, −𝛿 + −𝜇/, −𝛼 − 𝜎 − 𝜇Y , −𝜏 − 𝜇) , 𝜔 + 𝜇*} 
 

It can be shown that the Jacobian of (22) has five Eigen values with zero being one of them. The centre manifold theory 
used by [17] is used to analyze the dynamics of the model. The theorem stated below was used to analyze the dynamics of the 
model by [24].  

Taking β∗ as the bifurcation parameter such that: 
 

β∗ = −
Z*.([7\762)5976#:(]763)634

(2"7^)_F"F.J929^7634K
 When R< = 1	β∗ = −

([7\762)5976#:(]763)634
(2"7^)_F"F.J929^7634K

 

 
It follows that when β = β∗ the DFE satisfies the theorem that zero is a simple Eigen value and all other Eigen values have 

negative real parts. If β∗ is taken as the bifurcation parameter , we have a right Eigen vector u = (u" u, uU uV uW)` 
associated with the zero Eigen value and a left Eigen vector v = ,v",v,, vU, vV, vW/

`
 associated with the zero Eigen value 

satisfying the condition u. v = 1. 

I. Eigen Vectors 
𝐽𝐸∗< = 𝐽𝛽∗ The Jacobean of the model 𝐽𝛽∗ has a right Eigen vector denoted by 𝑢 = (𝑢" 𝑢, 𝑢U 𝑢V 𝑢W)a. 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡−µ& − δ 0 0 0 −𝛽∗ F"G

56#7G:A1&!D

0 −(𝛼 + 𝜇' + 𝜎) 0 0 0
0 𝛼 −(𝜇) + 𝜏) 0 0
𝛿 0 0 −𝜇*! −𝛽∗ F"G

56#7G:A1&!D

0 (1 − 𝜖)𝜃 0 0 −(𝜇* +𝜔) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
𝑢"
𝑢,
𝑢U
𝑢V
𝑢W⎦
⎥
⎥
⎥
⎥
=

⎣
⎢
⎢
⎢
⎡
0
0
0
0
0⎦
⎥
⎥
⎥
⎤
 

 
Let 

	
– (µ& + δ) = −k" ,−(𝛼 + 𝜇' + 𝜎) = −k,, −(𝜇) + 𝜏) = −kU, Λ,	 − (𝜇* +𝜔) = −kV, F"G

A1&!D
= kW, (1 − 𝜖) = kb. 

solving	we obtain 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝒖𝟏 =

2𝜷∗𝐤𝟓𝒖𝟓
𝒌𝟏

𝟐 < 𝟎
𝒖𝟐 = 𝟎
𝒖𝟑 = 𝟎

, 𝒖𝟒 =
𝜷∗𝐤𝟓
𝒌𝟏

𝒖𝟓7𝜹𝒖𝟏

𝝁𝑺𝑴
> 𝟎

𝒖𝟓 =
𝒖𝟏𝒌𝟏

𝟐

2𝜷∗𝐤𝟓
> 𝟎

	         (23) 

 
The Jacobean has a left Eigen vector given	𝒗 denoted by 𝑣 = ,𝑣",𝑣,, 𝑣U, 𝑣V, 𝑣W/

a
 which satisfies the condition	𝑢. 𝑣 = 1. 

Solving we obtain, 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝒗𝟏 =

𝜹𝒗𝟒
𝒌𝟏
> 0

	𝒗𝟐 =
𝒌𝟔𝜽𝒗𝟓
𝒌𝟐

> 0
	𝒗𝟑 = 𝟎
	𝒗𝟒 = 𝟎,
𝒗𝟓 = 𝟎

            (24) 
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We calculate the value of	𝒂 using 𝑣p𝑢Y𝑢q	
r.s@
rX)rX@

	Calculating the partial derivatives at disease free equilibrium by taking𝑘 =
1,2,	; i, j= 1,4, 5. and adding the non-zero partial derivatives we obtain the value of 𝒂 ,𝒂 = 𝒗𝟐u"uW(β + uV(1 − ϵ)β + 𝒗"β) <
0, 𝑎 < 0 Because u" < 0, 𝑣,, 𝑢V, 𝑢W > 0 . To obtain the value of b we use b=∑ 𝑣p𝑢Y	t

Yqu"
r.s@
rX)r𝜷∗

 , we calculate the partial 

derivatives with respect to 𝜷∗ and by taking𝑘 = 1, 2; i, j=1, 4, 5. Adding the non zero partial derivatives with respect to 𝜷∗we 
obtain the value of b. 
b = 𝑣,𝑢W(1 − 𝜖)

F"G
56#7G:A1&!D

+ 𝑣"𝑢W
F"

56#7G:
> 0. From theorem 5 (III); 𝑎 < 0 and 𝑏 > 0 when. Backward bifurcation does 

not occur hence it shows that it is possible to control bilharzia. 

J. Sensitivity Analysis 
The expression of 𝑅< is given in equation (10). Our 𝑅< depends on mass media campaign therefore we derive our sensitivity 

to each parameter using the normalized forward sensitivity index by [7]. The parameter values used in simulation and 
sensitivity index are; Λ, = 0.76, Λ" = 0.015, 𝛽 = 0.0002473419203324199, 𝜃 = 0.36, 𝛼 = 0.7000, 𝜎 = 0.0586, 𝜇' =
0.003000, 𝛿 = 0.6579, 𝜇/ = 0.00500, 𝜇*!u	,0.00250, 𝜖 = 0.3987,𝜔 = 0.063, 𝜇* = 0.15, 𝜏 = 0.1083, 𝜇) = 0.005464. 

 
TABLE I: PARAMETERS AND THEIR SENSITIVITY INDICES 

Parameter Sensitivity Index 
Λ" +0.999863 
Λ$ +0.00006854 
𝛽 +0.00006854 
𝜃 +0.00006854 
𝛼 -0.0000453261 
𝜎 -0.00000379444 
𝜇) -0.000019425 
𝛿 +0.00000233213 
𝜇* -0.000048415 
𝜇+! -0.0000660367 
𝜖 -0.0000454504 
𝜔 -0.294626 
𝜇+ -0.703077 
𝜏 0.000 
𝜇, 0.000 

 
K. Numerical Simulation 
Numerical simulations of the model system (1) are carried out using a set of parameter values given in Table II. Matlab 

R2015a is used in the numerical simulation to obtain results. Secondary (primary) data collected from Mwea irrigation scheme 
by [25] was used to estimate human populations and parameters used in the model while secondary data by [9] was used to 
estimate the snail population and other parameters relating to the snails. Graphical representations showing variations in 
different populations with respect to a given period of time (t) after exposure to media campaigns are given in Fig. 2-6. Most 
parameter values were obtained from literature and those not available from literature were estimated. 

TABLE II: PARAMETERS VALUES USED IN SIMULATIONS 
Parameter 

symbol Value out of 100 Source 

Λ$ 0.015 Okonjo Edward et al 
S 325142 Okonjo Edward et al 
S- 129634 Okonjo Edward et al 
𝐼 75108 Okonjo Edward et al 
𝑅 49413 Okonjo Edward et al 
Λ" 0.76 D.M. Ngigi et al 
𝛅 0.6579 Okonjo Edward et al 

 0.00500 KNBS,KPHC 2019 
𝜎 0.0586 Okonjo Edward et al 

 0.6785 Okonjo Edward et al 
 0.7000 Okonjo Edward et al 

𝜖 0.3987 Okonjo Edward et al 
 0.1083 Okonjo Edward et al 

 0.36 D.M. Ngigi et al 

 0.15 D.M. Ngigi et al 

 0.063 D.M. Ngigi et al 
B 905 D.M. Ngigi et al 
𝜇) 0.003000 Estimated 
𝜇, 0.005464 Estimated 
𝜇./ 0.00250 Estimated 

 

µ

l
a

t
q

sµ
w
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1) Graphical Presentation of Results 

 
Fig. 2. Variation of populations of susceptible with respect to time. 

 

 
Fig. 3. Variations of populations of infected people against time  

 
Fig. 4. Variations of populations of the recovered against time. 

 

 
 

Fig. 5. Variation of populations of the susceptible with media information who have avoided infection against time  
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Fig. 6. Variations of populations of infected snails against time. 

 

III. DISCUSSION AND CONCLUSION 

From the graphical results it is observed that when media campaigns are applied as a control strategy cause a reduction of 
transmission of bilharzia in Mwea irrigation scheme. From our findings it is observed that when media campaigns are done 
for a period of five years there is a reduction in the number of the susceptible, infectious and an increase in the number of 
recoveries and those who get information and avoid infections. It also noted that the snail populations will increase without 
increasing the infections because awareness will make people avoid direct contact with infected environment. Therefore there 
is a reasonable agreement between the results of our model and those done by other authors who have suggested that there is 
need for a more integrated approach putting emphasis on provision of health education and awareness to be considered as a 
control strategy of the disease in Mwea irrigation scheme and other endemic areas, since drug administration alone was not 
adequate in alleviating the disease burden. This proves the fidelity of our equations and the numerical scheme used to solve 
these equations.  
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