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A Deterministic Analysis of the
Effectiveness of Non-Clinical Approaches in
the Control of Transimission of
Schistosomiasis: Case Study of Mwea
Irrigation Scheme, Kenya
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Abstract — Schistosomiasis commonly known as bilharzia is regarded by W.H.O as a neglected tropical disease. It
affects the intestines and the urinary system preferentially, but can harm other systems in the body. The disease is a
health concern among majority of the population in Mwea irrigation scheme in Kenya and indeed other tropical
countries. This paper documents a deterministic analysis of the effectiveness of non-clinical approaches in the control
of transmission of schistosomiasis in the region. A SIR based mathematical model that incorporates media campaigns
as a control strategy of reducing transmission of the disease is used. The model considers behavior patterns of hosts
as the main process of transmission of the disease. The dynamics of these processes is expressed in terms of ordinary
differential equations deduced from the human behavior patterns that contribute to the spread of the disease. The
reproduction number Ry and equilibrium points both DFE and EE are obtained. The stabilities of these equilibrium
points are analyzed in reference to the reproduction number (Ry). Secondary data is used in the mathematical model
developed and in the prediction of the dynamics estimated in the model for a period of five years. Numerical
simulation was carried out and results represented graphically. The results of the simulation show that the infection
decreased from 75108 to about 35000 and the susceptible from 325142 to 50000 respectively in a period of five years.
From the analysis, the DFE point is asymptotically stable when R_0<1.Sensitivity analysis of parameters was carried
out using partial differentiation. The results show that the sensitivity index of most parameters are inversely
proportional to Ry which will reduce schistosomiasis infection. From the results, incorporation of media campaigns
as a control strategy significantly reduces transmission of the disease. The results will be useful to MOH to enhance
media campaigns to prevent spread of schistosomiasis in Mwea Irrigation scheme and other endemic areas.

Keywords — Disease free equilibrium and endemic equilibrium, local and global stabilities of equilibrium points,
reproduction number, Schistosomiasis, sensitivity analysis.

I. INTRODUCTION

Human Schistosomiasis is the third most devastating tropical diseases in the world after malaria and intestinal helminthiasis
according to the World Health Organization [37]. Schistosomiasis also referred to as Bilharzia or snail fever. Human
schistosomiasis is a parasitic disease caused by parasitic worms that infects multiple organs including the liver, intestine,
bladder and urethra. Clinical manifestations of schistosomiasis include fever and headache. Infection can occur in several sites
including bile ducts, intestine and bladder. The disease may be eliminated with praziquantel as it is currently the only effective
treatment of the disease; vaccines and gene therapy are proposed as future treatment plans. kato-katz method and PCR are
detection tools for people with schistosomiasis.

Environmental and climatic factors play an important role in the geographical distribution of the disease. In Kenya,
Schistosomiasis is mainly prevalent around Lake Victoria, Kwale county and Mwea irrigation scheme located in Kirinyaga
county. The main socio-economic activity in this area is rice growing through irrigation using water from river Thiba and
Nyamindi. Farmers spend most of their time in the field during the day and there are no toilet facilities in the vast open area in
the paddies therefore water canals are the most likely places for defecation [21].

A study conducted in all primary schools in Mwea Division by Eastern and Southern Africa Center for International Parasite
Control (ESACIPAC), indicated an overall prevalence of 36% in Schistosoma mansoni with more than 50% of schools within
the irrigation area demonstrating infection rate of 50% and above in S. mansoni infection. School-age children therefore form
a high risk group for soil transmitted helminths infections and schistosomiasis. Movements of people from rural to urban areas
can cause the spread of schistosomiasis, seasonal migration of employees and refugees can also lead to outbreaks of the disease
[23].
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II. MODEL ANALYSIS

A. Model Description

In our model the total population is divided into five compartments depending on the epidemiological status of individuals;
these include susceptible S (t), symptomatically infected I (t), recovered R (t), susceptible exposed to media S, (t) and have
avoided infection, level of snail concentration in contaminated water B (t). The susceptible population increases due to the
incoming of individuals who come into contact with contaminated water at the rate of A; and recovered individuals who join
susceptible class at the rate of7 . The parameters and their descriptions are given in Table II. The assumptions of the model
include, the total population of individuals is not constant, controls are implemented continuously, treatment is introduced to
the infected population, awareness leads to the reduction in new infections and re-infections, individuals in each compartment
are homogenously mixing with each other and on recovery there is temporary immunity. Fig. 1 represent flow of the model
where arrows represent movement of individuals from one compartment to the next and dotted arrows show the effect of media
campaigns.
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Fig. 1. Schematic flow chart of Schistosomiasis model.
Model equations from the flow chart
L= A+ TR = (1 +2;)S — 8S
PriaE! Hp 1
%=AS+(1—6)115M—(0(+/1, + o)l
Z—fzal—(,uR + )R (1)
ds
d_:d =05 — UsySu — (1 — €)A1Sy
Z—f=A2 +(1—€)6I — (ug + w)B

B. Boundedness

The model monitors dynamics of a disease involving human population hence it is important to show the limits within which
the population lies. The carrying capacity in this case is the total of the equations with human population N.

dN

P Ay = (upS + I + prR + pisy Sy (2)

Taking the derivatives of total population along the solution path we obtain 2—1: + uN > A, After integrating (2) we obtain:

S O 3)
u

where K is a constant of integration

But(S + I + R + Sy)) is N then When t=0 (S + I + R + S);) = K Where K is a constant hence N = K.
C. Positivity
Positivity is obtained by letting S(t), I(t), R(t), B(t) to be any solutions of a system of equations with non-negative initial
conditionsS(0) = 0,1(0) = 0,R(0) = 0,B(0) = 0. We solve (1) we obtain
ds
=2 —(u, +1+6)S (4)
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Integrating equation (4) by separation of variables we obtain % = —(up +A+ S)dt ,S(t)=H e~ (bpt2+8)t Where H is a

constant. Whent = 0,5(0) > H e~(up+A+8)0 > g (hence positive). We solve the other equations.

L2 —(a+p + 6)L1(0) 2 Ke~@Hrtal > o,

Z_I; > —(ug + )R, R(0) = De~#r*tD0 > o

) } 5
d;—:/l = _‘u'SMSM - (1 - E)AlsM'SM (O) = Ge [”SM+(1 5)/1]0 > 0 ( )
% = (1 - 6)91 - (.uS + (A))B, B(O) > Fe_(w"'lls)o >0

(5) above shows that system 1 remains positive at all time ¢ > 0.

D. Basic Reproduction Number and Disease Free Equilibrium Point

Disease free equilibrium is obtained by setting model system of equations 1 as % = % = 2_1: = ﬁ—:” = % = 0 and in the

absence of the disease I = B = R = 0 hence the system of (1) reduces to (6)

Ay —(pp+2)S—85=0 ©)
Solving the above equations with A = 0; (6) becomes
A 0 A 0o _ A
St -7 > S - T~ 7
(kp+2+9) (np+o) > =M (Mp+5)[#sM] ™
Thus the disease free equilibrium point is stated as:
E° = (5°,19 RO, 85, B) (—21,0,0,—22 o, 8
( i B°) ((up+5) (hp+6) |15y ®

In the absence of infection the system will consist of two compartment classes the susceptible and susceptible with media
information.

We calculate the basic reproduction number using the next generation operator method by [30]. We use F to show matrix
of new infections and V' the matrix of transfer of infection.

A, +(1—-€)61
i )
V= (a+,u,+a)1]
| (us +w)B
The product of FV =1 is given as where V™1 is the inverse of V:
[ A1 (psy,+(1-€)6)
FV-1 = (p+8) (us+@lusy, (10)
(1-e)8 0
L(a+pr+o)
The basic reproduction number takes the largest Eigen value of FV ~1:
R, = JBV=1+eVo. /A, (11
\/a+a+ui\/6+up\/w+u5m

E. Local Stability of Disease Free Equilibrium Point
1) Theorem I

A DFE point is locally asymptomatically stable if R, < 1, otherwise unstable.
Proof: We compute the Eigen values of the Jacobian matrix of the model (1). The Jacobian- matrix is obtained by
differentiating each of the equations in the system with respect to S°, 1%, R°, S,,°, B°. A = BB°, B® = 0 at DFE E°.
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—(np +9) 0 T 0 0
0 —(a+y +o) 0 0 0
Je, = 0 a —(ug+7) 0 0
6 0 0 —HUsy, 0
0 (1-¢)6 0 0 —(us + w)

The Eigen values of the above matrix are{—a — U —0,—Up — 06, —Ugp — T,— s — W, —,usM,}
It is evident that all the Eigen values are negative thus the disease free equilibrium point is locally asymptomatically stable.
F. Global Stability of Disease Free Equilibrium

The criteria that is used to determine the condition necessary for global asymptotic stability of the DFE is the Lyapunov
criterion for stability. To prove the global stability, we state and prove the following theorem.

1) Theorem and Proof
The DFE equilibrium model is globally asymptomatically stable if R," < 1 and unstable if R," > 1 .We consider a linear

and logarithmic Lyapunov function for the system of (1) as follows:

G(S,I,R,S,,B) =S —S°— s°ln( )+k1+k2R+k3S +k,B (12)

A Lyapunov function G satisfies the following conditions to guarantee global asymptomatic stability:
i) G(s°1°R°S,° B°)=0andG(S,I,R,Sp, B) >0forS,I,R,S,,B+0

o O o
i) a(so1 Ztsm 0p%) —0a dd(SIRSmB)<O.
iii)
AtDFE, G(5,1°,R?,S,,%, B®) = §° = 5° — $°ln (5 ) + k10 + kyRO + k3S,° + kB (13)

Since I = R% = 5,,° = B® = 0 and In1 = 0 G(S°,1°,R?,S,,,°, B®) = 0 Condition (1) is satisfied. In the same sense, S #
Oandl# 0,R #0,S,, ¢OB¢0andln( )¢0 thus G(S,1,R,S,,, B) > 0

d(s,I,R sm B) dSm

Condition (ii) (1 - —) + k1 p Ly k2 — 4 ks ——+ k4 ” 14)

0 ;0 0 0 po 0
AtDFEW =0Since I =R% =5,° =B° =0, (1 - z—o) = 0 hence the conditionw < 0 will help

us to ascertain the Global stability of DFE

I dS dI dR dSy dB
Substituting for —,—,—,—=,— we have
dat’dt’ dt’ de

0
LSRID — (1 =) (A + 7R = (p +2)S = 65) + ky(AS + (1 — AS,, — (@ + 1 + ) + ky(al — (g + DR) +

k3(8S = psmSm — (1 = €)ASy) + ky(A2B + (1 — €)0I — (us + w)B) (15)

By grouping linear and non-linear terms we obtain the values of ki, k,, ks, k, and and substituting k; = 1,k, = 1,k; =
1 and k, = 0 into the equation (14) and expanding we obtain and putting the positives and negatives together we obtain:

LELRSMB) — 7| 4 7R + 11, SO + AS® + 8SO + AS + AS,y, + 85 + €AS,y, — 1,S — AS — 85 — Al——TR——E/IS —al -
dt
wl —ol+al —pgR — TR — U Sp — ASi (16)

d(S,I,R,Sm,B)

Letting P and Q be positive and negative terms respectively then we have, =P—Q (17). If Q > P then the

system is globally asymptotically stable otherwise unstable.
G. Endemic Equilibrium Point

Endemic equilibrium exists whenever R, > 1 and it is asymptomatically stable. As Rjincreases through one there is an
exchange of stability between disease free equilibrium and endemic equilibrium point. Endemic equilibrium point is obtained
by setting the right hand side of the model equations 1 to zero and that ,B > 0,1 > 0,A > 0,S > 0,R > 0. We solve model
of equations 1 in terms of force of infection A = fB. * = 1. We obtainS*, I*, R*,S,,*, B* . By letting Hp = My, Uy = Ha sy, =

Haz, Hr = U3, Us = Us.
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_ —atpp+A1(t+uz)(a+o+py)
- (60-2(2a+0))t+uq (T+uz)(a+o+puy)+(6-1)(tpatus(a+o+us))
_ ((6+1)A1—(5-A+pu1)uz) (T+u3)
- (60-2(2a+0))T+uq (T+uz)(@+0+pg)+(5—) (Tpa+pz(@+o+us))
R* = a(6+M)A1—a(6—A+pu1)us (18)
(60-A2a+0))T+uy (T+uz)(@+0+pa)+(6-)(Tua+uz(a+o+us))
* _ (81 (tpz)(atotps)—pa((@(8-2D)+(6—A)o)T+ps (T+uz)(@+o+ua) +(E-D) (T tuz(@+0+ua))))
((-1+6)A((2ad+(=6+)0)T—p1 (T+uz) (@ +0+1ug)—(6-A) (Tpa+pz(a+0+1s))))
* (=1+€)6042((6+)A1—(6—A+p1) p2) (T+U3)
(2aA+(=6+)0)t—p1 (T+uz)(a+0o+us)—(6-A)(Tpatpz(a+o+us)))(@+ps)

S*

I*

Sm

Using equations 18 we substitute them in the force of infection to obtain A* the force of infection at endemic equilibrium
point in terms of f. We obtain two values of A" as:

. R}
/11:P1_2A_392+P4+93_Rg,02 (19)

. R}
/12:P1_2A_2.02+P4_P3_Rgpz (20)

Substituting 8* in equations with A*; and then substituting 1*; in (18) we obtain S*, I*, R*,S,,", B* in terms ofR,. Let
A*y =Aand 'y = &R,.

g [ —atuy + (@ + 0 + u) A [t + psl ]
T e+ o+ pdut + ] + (6 — ERQ) (tpty + palar + 0 + 1) + 7(80 — ERo[2a + 0])
= [ ( + ) (=12 (8 + 1 — ER) + 4:(8 + ERy)) ]
(a+0+pdulr + psl + (6 — R (g + psla + 0 + ) + (80 — §Ro[2a + o))
R = [ —wpa[8 + uy — ERo] + A6 + ERo] ]
(@+ 0+ pdult + psl + (6 — §R) (g + psla + 0 + pul) + (80 — §Ro[2a + o)
. §(a + 0 + p )AL [T+ ps] — py[t(0(6 — ERy) + a8 — 28R, 1) + (a + 0 + pgdp [T + pz] + (6 — ER) (tpy + pzla + o + p, D]
M (-1+ G)ERO[T(ZD‘ERO +a(=6+ ERO)) —(a+ 0+ pulr + ps] — (6 — §R) (Tpy + puzla + o + H4])]
B = (=1+6)0(T + uz)Ay[—u, (8 + g — §Ry) + A1(8 + ERp)] ]
(w0 + ps)(T(2a8R + 0(=6 + ER()) — (a + 0 + pg)pa [T + 3] = (6 — ERo) (g + ps[ar + 0 + 1y]))

21

Thus, the endemic equilibrium point is stated as E*and exists if R, > 1.

E* = (S*1I*,R*, Sy, B*)

H. Bifurcation of the Model
Bifurcation analysis is done using Centre Manifold theory [17]. To apply centre Manifold theory the change of variables is
done first for simplicity. Let S = x;,1 = x5, R = x3,Sy = x4, B = x5 then N = x; + x, + x3, +x, + xs.

The model can be written as Z—Iz = F(x) where= (fi, f3, f5, fa, fs) A" = B*B, where 8~ is the bifurcation parameter.

f= % = Ay + TR = (i + B7x5)x; — 8%y
fo = % =Bxsx + (1 - )f xsx, — (@ + 1y + 0)x,
P % — ax, — (o 4 D, (22)
fa = % = 6x1 — phsyXa — (1 — €)B"x5X4
fs = % =N, + (1= 6)8x; — (s + w)xs

The method entails obtaining the Jacobian of the system of (22) at disease free equilibrium E® = (S°,1° R®,S§; B®) =

Ay A48
’050’ ,0, .
((Mp+5) (kp+8)| sy )
We consider a case where R, =1 ,we take B = B* as the bifurcation parameter. Then from R, =1 gives B* =

_ (atotpu)(S+up)(@+us)isy, aN _ . S o 0 .- o
100 12(0-dehsy) 1} the Jacobean of ol F(x) at disease free equilibrium when § = * denoted by JE, withf = 8

has the Eigen values:
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_ 5 0 0 0 —p— O
- T LA
b (1p + 8)[us,, ]
0 —(a+uy +0o) 0 0 0
JEC =B =| 0 a —(ug+1) 0 0
8 0 0 5*—A16
s —
T G+ 0) sy
0 (1-¢)6 0 0 (us + w)

Obtaining the Eigen values the above Jacobean matrix at DFE and obtaining § = f* interms of Rysuch that R,f* =1. We
obtain the Eigen values as:

{0,=6 + —pp,—a— 0 — p;, —7 — pp, 0 + pig}

It can be shown that the Jacobian of (22) has five Eigen values with zero being one of them. The centre manifold theory
used by [17] is used to analyze the dynamics of the model. The theorem stated below was used to analyze the dynamics of the
model by [24].

Taking B* as the bifurcation parameter such that:

Ro (at+o+1;) (8+up ) (@+1s)s),
(—1+e)9A1A2(8—8€+ USM)

(a+o+p)(8+up ) (w+usug )y,
(-1+€)0A1A; (8—85+p.5M)

B* = When Ry = 18" =

It follows that when 3 = B* the DFE satisfies the theorem that zero is a simple Eigen value and all other Eigen values have
negative real parts. If B* is taken as the bifurcation parameter , we have a right Eigen vectoru = (U1 Uy Uz Uz Us)T
associated with the zero Eigen value and a left Eigen vector v = (V1'V2,V3, Vi, v5) associated with the zero Eigen value
satisfying the condition u.v = 1.

1. Eigen Vectors
JEO = JB* The Jacobean of the model JB* has a right Eigen vector denoted by u = (U1 Uz Uz Uy Us)T,

- A8
—U. — & 0 0 0 R
& P Gl | s 10
0 —(a+y +o0) 0 0 0 u| lo
0 a —(ug+1) O 0 uz =0
v M8 u.l lo
1) 0 0 - _pr__A10 (Y4
M —F (hp+8)|usyy] |Lus] Lo
0 (1-¢)6 0 0 —(us + w)
AL
Let—(p.p +8) =k ,—(a+u +0)=-ky, —(ug +7) = —k3, Ay — (Us + @) = —k,, m = ks, (1 —€) =K.
M
u, = —_ﬁ;l:zsus <0
uz =0
Uz = 0
solving we obtain %uﬁ Suy (23)
, Uy = T >0
2
us =0 >0

. . T . iy
The Jacobean has a left Eigen vector given v denoted by v = (vl’vz, V3, Uy, 175) which satisfies the condition u.v = 1.
Solving we obtain,

_5174
vl—k—l
ke
172:6k_1]5>0
2 (24)
v3=0
]J4:0,
175=0

>0
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. 02
We calculate the value of a using v, u;u; ——L&
J axiaxk

1,2,;1,j= 1,4, 5. and adding the non-zero partial derivatives we obtain the value of a ,a = v,u,us (B + u, (1 — )+ v, B) <

. 62
0, a < 0 Because u; <0, v,,uy,us > 0 . To obtain the value of b we use b=, v, u; 0xi¢§;* ,

derivatives with respect to 8* and by takingk = 1, 2; i, j=1, 4, 5. Adding the non zero partial derivatives with respect to *we
obtain the value of b.

b=wvu(1—¢)

Calculating the partial derivatives at disease free equilibrium by takingk =

we calculate the partial

18 ] + v Us 21 0. From theorem 5 (II); a < 0 and b > 0 when. Backward bifurcation does

(Hp+5)[#sM (up+6)
not occur hence it shows that it is possible to control bilharzia.
J. Sensitivity Analysis

The expression of R, is given in equation (10). Our R, depends on mass media campaign therefore we derive our sensitivity
to each parameter using the normalized forward sensitivity index by [7]. The parameter values used in simulation and
sensitivity index are; A, = 0.76,A; = 0.015,5 = 0.0002473419203324199,60 = 0.36,a = 0.7000,0 = 0.0586, y; =
0.003000,6 = 0.6579, u,, = 0.00500, yg,,— 0.00250, € = 0.3987, w = 0.063, ug = 0.15,7 = 0.1083, u = 0.005464.

TABLE I: PARAMETERS AND THEIR SENSITIVITY INDICES

Parameter Sensitivity Index

A, +0.999863

Ay +0.00006854
B +0.00006854
6 +0.00006854
a -0.0000453261
o -0.00000379444
U -0.000019425
) +0.00000233213
Up -0.000048415

Usy -0.0000660367
€ -0.0000454504
) -0.294626

Us -0.703077
T 0.000

Ur 0.000

K. Numerical Simulation

Numerical simulations of the model system (1) are carried out using a set of parameter values given in Table II. Matlab
R2015a is used in the numerical simulation to obtain results. Secondary (primary) data collected from Mwea irrigation scheme
by [25] was used to estimate human populations and parameters used in the model while secondary data by [9] was used to
estimate the snail population and other parameters relating to the snails. Graphical representations showing variations in
different populations with respect to a given period of time (t) after exposure to media campaigns are given in Fig. 2-6. Most

parameter values were obtained from literature and those not available from literature were estimated.
TABLE II: PARAMETERS VALUES USED IN SIMULATIONS

Parameter Value out of 100 Source
symbol

Ay 0.015 Okonjo Edward et al
S 325142 Okonjo Edward et al
Sm 129634 Okonjo Edward et al
I 75108 Okonjo Edward et al
R 49413 Okonjo Edward et al
A, 0.76 D.M. Ngigi et al

8 0.6579 Okonjo Edward et al
H 0.00500 KNBS,KPHC 2019
o 0.0586 Okonjo Edward et al
A 0.6785 Okonjo Edward et al
a 0.7000 Okonjo Edward et al
€ 0.3987 Okonjo Edward et al
T 0.1083 Okonjo Edward et al
0 0.36 D.M. Ngigi et al

‘us 0.15 D.M. Ngigi et al
) 0.063 D.M. Ngigi et al
B 905 D.M. Ngigi et al
U 0.003000 Estimated

Ug 0.005464 Estimated

Hsm 0.00250 Estimated
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1) Graphical Presentation of Results
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Fig. 2. Variation of populations of susceptible with respect to time.
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Fig. 3. Variations of populations of infected people against time
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Fig. 4. Variations of populations of the recovered against time.

N
=

Population of recovered patients

12 1 | | | | 1 | | |
0 0.5 1 15 2 25 3 35 4 45 5
Time t (in years)

Population of susceptible with media
information who have avoided infection

Fig. 5. Variation of populations of the susceptible with media information who have avoided infection against time
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Fig. 6. Variations of populations of infected snails against time.
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III. DIscuUsSION AND CONCLUSION

From the graphical results it is observed that when media campaigns are applied as a control strategy cause a reduction of
transmission of bilharzia in Mwea irrigation scheme. From our findings it is observed that when media campaigns are done
for a period of five years there is a reduction in the number of the susceptible, infectious and an increase in the number of
recoveries and those who get information and avoid infections. It also noted that the snail populations will increase without
increasing the infections because awareness will make people avoid direct contact with infected environment. Therefore there
is a reasonable agreement between the results of our model and those done by other authors who have suggested that there is
need for a more integrated approach putting emphasis on provision of health education and awareness to be considered as a
control strategy of the disease in Mwea irrigation scheme and other endemic areas, since drug administration alone was not
adequate in alleviating the disease burden. This proves the fidelity of our equations and the numerical scheme used to solve
these equations.
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