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Abstract — In this article, we generalize the !𝑮

!(𝝃)
𝑮(𝝃)

" −	expansion method which is one of the 
most important methods to finding the exact solutions of nonlinear partial differential 
equations. The new generalized method, named conformal fractional !

𝑫𝝃𝜶𝑮(𝝃)

𝑮(𝝃)
" −expansion 

method, takes advantage of Katugampola’s fractional derivative to create many useful traveling 
wave solutions of the nonlinear conformal fractional Sharma-Tasso-Olver equation. The 
obtained solutions have been articulated by the hyperbolic, trigonometric and rational functions 
with arbitrary constants. These solutions are algebraically verified using Maple and their 
physical characteristics are illustrated in some special cases. 
 

Index Terms — Conformal fractional !
𝑫𝝃𝜶𝑮(𝝃)

𝑮(𝝃)
" −expansion method, nonlinear conformal 

fractional Sharma-Tasso-Olver equation.   
 

I. INTRODUCTION 
Since ancient times, mathematics and physics have been two sides of the same coin. They work together 

to find effective solutions to many real-world problems and to explain many physical phenomena.  
In the past, a wide range of methods have been developed to generate analytical solutions of nonlinear 

partial differential equations. Among these methods are the $𝐺
′(𝜉)
𝐺(𝜉)%− expansion method [1], [2], the double 

auxiliary equations method [3], the generalized of exp&−𝜙(𝜉)+ −expansion method [4], [5], and various 
other methods [6]-[11]. 

Several years ago, many mathematicians proposed formulas of fractional derivatives that physicists use 
for modeling many phenomena. For example, in [12]-[15] Jumarie proposed a modified Riemann-Liouville 
fractional derivative as follows: 

 
𝑓($)(𝑡) = &

'(&($)
)
)* ∫

*
+ (𝑡 − 𝑥)

($&𝑓(𝑥) − 𝑓(0)+𝑑𝑥.   (1) 
 
and the chain rule defined in (2): 
 

4𝑓&𝑢(𝑡)+6
($)

= 𝑓,	
"𝑢($)(𝑡),             (2) 

 
The chain rule has been applied by several authors to find the exact solutions to some nonlinear fractional 

differential equations. For example, Zhang and Zhang [16] proposed the fractional sub-equation method to 
search for exact solutions of nonlinear time fractional biological population. Jafari et al. [17] used this 
method to obtain the exact solutions of the nonlinear fractional Sharma-Tasso-Olver equation, while Cesar 
et al. [18] solved it using the improved generalized tanh-coth method. 

However, Cheng proved in [19], [20] that Jumarie’s chain rule is not correct, and therefore the 
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corresponding results on differential equations are not true in particular those solutions obtained by Jafari 
et al. [17] and Cesar et al. [18] for the nonlinear fractional Sharma-Tasso-Olver equation. 

The chain rule has been applied by several authors to find the exact solutions to some nonlinear fractional 
differential equations. For example, Zhang and Zhang [16] proposed the fractional sub-equation method to 
search for exact solutions of nonlinear time fractional biological population. Jafari et al. [17] used this 
method to obtain the exact solutions of the nonlinear fractional Sharma-Tasso-Olver equation, while Cesar 
et al. [18] solved it using the improved generalized tanh-coth method. 

However, Cheng proved in [19], [20] that Jumarie’s chain rule is not correct, and therefore the 
corresponding results on differential equations are not true in particular those solutions obtained by Jafari 
et al. [17] and Cesar et al. [18] for the nonlinear fractional Sharma-Tasso-Olver equation. 

This paper proposes a new conformal fractional 8
.#
$/(0)

/(0)
9 − expansion method, which generalizes the 

4𝑮
"(𝝃)
𝑮(𝝃)

6 −  expansion method, using the definition of the new conformal fractional derivation presented by 
Katugampola [21]. The new method satisfies the product, quotient, and chain rules for obtaining the exact 
traveling wave solutions for the nonlinear conformal fractional Sharma-Tasso-Olver equation [17], [18]: 

 
𝐷*$𝑢 + 3𝛿𝑢3𝐷4$𝑢 + 3𝛿(𝐷4$𝑢)3 + 3𝛿𝑢𝐷43$𝑢 + 𝛿𝐷45$𝑢 = 0,  (3) 

 
where 0 < 𝛼 ≤ 1, 𝑢 = 𝑢(𝑥, 𝑡), 𝑡 > 0, 𝛿 is a constant. 

The new obtained solutions of the nonlinear conformal fractional Sharma-Tasso-Olver equation are 
algebraically verified in Section 3 using Maple and illustrated with their physical characteristics in Section 
4 in some special cases. 

 

II. THE GENERAL EXPRESSION FOR CONFORMAL FRACTIONAL 8
.#
$/(0)

/(0)
9 −EXPANSION METHOD 

To understand the conformal fractional 8
.#
$/(0)

/(0)
9 −expansion method, we first provide the main 

definition and properties of the conformal fractional calculus proposed by Katugampola in [21]. 
Definition 2.1. Let	𝑓:	[0,∞) ⟶ 	ℝ	be a continuous function. The conformal fractional derivative of	𝑓 

of order 𝛼 is defined by, 
 

𝐷$(𝑓)(𝑡) = lim
6→+

&𝑓&𝑡𝑒6*%$+ − 𝑓(𝑡)+ 𝜀⁄     (4) 
 
for all 𝑡 > 0, 𝛼 ∈ (0,1] .If	𝑓	is 𝛼 −differentiable in some (0, 𝑎), 𝑎 > 0, and lim

*→+&
𝐷$(𝑓)(𝑡)	exist, then 

define: 
 

𝐷$(𝑓)(𝑡) = lim
*→+&

𝐷$(𝑓)(𝑡)     (5) 
 
Theorem 2.1. Let 𝛼 ∈ (0,1] and 𝑓, 𝑔 be two 𝛼 −differentiable functions at a point 𝑡 > 0 .Then 

i. 𝐷*$(𝑎𝑓 + 𝑏𝑔)(𝑡) = 𝑎𝐷*$𝑓(𝑡) + 𝑏𝐷*$𝑔(𝑡), for all 𝑎, 𝑏 ∈ ℝ. 
ii. 𝐷*$(𝑡8) = 𝑛𝑡8($ , for all 𝑛 ∈ 	ℝ. 

iii. 𝐷*$(𝑐) = 0, for all constant functions 𝑓(𝑡) = 𝑐. 
iv. 𝐷*$(𝑓𝑔)(𝑡) = 𝐷*$𝑓(𝑡)𝑔(𝑡) + 𝐷*$𝑔(𝑡)𝑓(𝑡). 
v. 𝐷*$ 4

9
:
6 (𝑡) = &𝐷*$𝑓(𝑡)𝑔(𝑡) − 𝐷*$(𝑔)𝑓(𝑡)+ 𝑔(𝑡)3⁄  

vi. 𝐷*$(𝑓 ∘ 𝑔)(𝑡) = 𝐷:$𝑓&𝑔(𝑡)+𝐷*$𝑔(𝑡). 

The main steps of the new proposed conformal fractional 8
.#
$/(0)

/(0)
9 − expansion method is described as 

follows: 
Step 1. Consider a conformal fractional partial differential equation in the form: 
 

𝐹(𝑢, 𝑢* , 𝑢4 , 𝐷*$𝑢, 𝐷4$𝑢, . . . ) = 0,														0 < 𝛼 ≤ 1,   (6) 
 
where 𝐷*$𝑢 and 𝐷4$𝑢 are Katugampola’s fractional derivative of 𝑢. Using the transformation, 
 

𝑢(𝑥, 𝑡) = 𝑢(𝜉)		,						𝜉 = 4;'
$
6𝑥$ + 4;(

$
6 𝑡$ ,                                               (7) 
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Equation (6) reduced to a nonlinear conformal fractional ordinary differential equation for 𝑢 = 𝑢(𝜉) in the 
form:   
 

𝑃&𝑢, 𝐷0$𝑢, 𝐷03$𝑢, 𝐷05$𝑢, . . . + = 0.										                                                      (8) 
Step 2. By balancing the highest derivative and nonlinear terms in ( 8), and using the (9), the value of 

the positive integer (𝑚) is determined: 
 

𝐷𝑒𝑔𝑟𝑒𝑒 Z𝑢< 4)
),
)0)
6
=
[ = 𝑚𝑝 + 𝑠(𝑚 + 𝑞),                                                 (9) 

 
Step 3. The solution of (8) can be expressed as follows: 

  

𝑢(𝜉) = ∑>?@+ 𝛼? 8
.#
$/(0)

/(0)
9
?
,                                              (10) 

 
where, 𝛼? 	(𝑖 = 0,1, . . . , 𝑚) are constants to be determined, and 𝐺(𝜉) satisfies the following conformal 

fractional differential equation: 
 

𝐷03$𝐺(𝜉) + 𝜆𝐷0$𝐺(𝜉) + 𝜇𝐺(𝜉) = 0       (11) 
 

First, we can express the solutions of the conformal fractional equation (11) as follows: 
 

𝐺(𝜉) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧/𝐶&sinh5

&
'
6((

$)*+)
,$

𝜉,7 + 𝐶'cosh5
&
'
6((

$)*+)
,$

𝜉,7;𝑒-
%&'(

$( .; (𝜆' − 4𝜇) > 0

/𝐶&sin 5
&
'
6(*+)(

$)
,$

𝜉,7 + 𝐶'cos 5
&
'
6(*+)($)

,$
𝜉,7; 𝑒-

%&'(

$( .; (𝜆' − 4𝜇) < 0

(𝐶& + 𝐶'𝜉,)𝑒
-%&'

(

$( .		; (𝜆' − 4𝜇) = 0																				

      (12) 

     

Thus, the  8
.#
$/(0)

/(0)
9can be reformulated as follows: 

     

/'
(0(1)

0(1)
=

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
− (
'
+ ,

'
6(($)*+)

,$
E
2)34567

)
$
8*&

$%+,-
($ 1(9:2$5;<67

)
$
8*&

$%+,-
($ 1(9

2)5;<67
)
$
8*&

$%+,-
($ 1(9:2$34567

)
$
8*&

$%+,-
($ 1(9

F ; (𝜆' − 4𝜇) > 0

− (
'
+ ,

'
6(*+)($)

,$ E
2)3457

)
$
8*+,%&

$-
($ 1(9)2$5;<7

)
$
8*+,%&

$-
($ 1(9

2)5;<7
)
$
8*+,%&

$-
($ 1(9:2$3457

)
$
8*+,%&

$-
($ 1(9

F ; (𝜆' − 4𝜇) < 0

− (
'
+ 2$,

2):2$1(
; (𝜆' − 4𝜇) = 0																				

  (13) 

 
where 𝐶&, 𝐶3are arbitrary constants. 

Step 4. Substituting (10) into (8) and using (11), and then setting all the coefficients of 8
.#
$/(0)

/(0)
9
?
 in the 

resulting systems to zero, yields a system of algebraic equations for 𝑘&, 𝑘3, 𝜆, 𝜇 and 𝛼? (𝑖 = 0, . . . , 𝑚). By 
solving this system and substituting 𝑘&, 𝑘3, 𝜆, 𝜇, 𝛼? and the formula (13) into (10), we obtain the exact 
solution for (8).   

 

III. THE EXACT SOLUTION FOR NONLINEAR CONFORMAL FRACTIONAL SHARMA-TASSO-OLVER EQUATION 

In this section, the conformal fractional 8
.#
$/(0)

/(0)
9 expansion method will be applied to find the exact 

solutions of the nonlinear conformal fractional Sharma-Tasso-Olver equation: 
 
 𝐷*$𝑢 + 3𝛿𝑢3𝐷4$𝑢 + 3𝛿(𝐷4$𝑢)3 + 3𝛿𝑢𝐷43$𝑢 + 𝛿𝐷45$𝑢 = 0, (14) 

where 0 < 𝛼 ≤ 1. 
Suppose that, 
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 𝑢(𝑥, 𝑡) = 𝑢(𝜉)		,						𝜉 = 4;'
$
6 𝑥$ + 4;(

$
6 𝑡$ , (15) 

 
where 𝑘&, 𝑘3 are a constants. Substituting (15) into (14), gives the following nonlinear conformal fractional 
ordinary differential equations: 
 

𝑘3𝐷0$𝑢 + 3𝛿𝑘&𝑢3𝐷0$𝑢 + 3𝛿𝑘&3&𝐷0$𝑢+
3 + 3𝛿𝑘&3𝑢𝐷03$𝑢 + 𝛿𝑘&5𝐷05$𝑢 = 0.  (16) 

 
Suppose that (16) has the following solution: 
 

 𝑢(𝜉) = ∑>?@+ 𝛼? 8
.#
$/(0)

/(0)
9
?
, 𝛼? ∈ ℝ (17) 

 
 Balancing the order of 𝐷05$𝑢 and 𝑢3𝐷0$𝑢 , we find 𝑚 = 1. So, 

 

 𝑢(𝜉) = 𝛼+ + 𝛼& 8
.#
$/(0)

/(0)
9. (18) 

 

Substituting (18) and (11) into (16), the left-hand side is converted into polynomials in 8
.#
$/(0)

/(0)
9
A
, 

(𝑗 = 0,1,2, . . . . ). By collecting each coefficient of these resulted polynomials to zero, we obtain a system 
of algebraic equations for 𝛼+, 𝛼&, 𝑘& and 𝑘3, which are not presented for sake of clarity. By Solving these 
algebraic equations with the help of algebraic software Maple, we obtain: 

Case 1 
 

h𝛼+ =
5BC;'(DE(5B;'FG;(D;'*B(C((GH)I

JB;'
, 𝛼& = 𝑘&, 𝑘& = 𝑘&, 𝑘3 = 𝑘3i    (19) 

 
Substituting (19) into (18), we have: 

 

⎩
⎪
⎨

⎪
⎧
𝑢(𝜉) = n

5BC;'(DE(5B;'FG;(D;'*B(C((GH)I

JB;'
o + 𝑘& 8

.#
$/(0)

/(0)
9 ,

𝜉 = 4;'
$
6 𝑥$ + 4;(

$
6 𝑡$ .		

 (20) 

 
Consequently, the exact solution of the of the nonlinear conformal fractional Sharma-Tasso-Olver 

equation (14) with the help of (13), are obtained in the followin form: 
Case (1-1). When (𝜆3 − 4𝜇) > 0, 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑢&,&(𝜉) =

⎝

⎜
⎜
⎛
5BC;'(DE(5B;'FG;(D;'*B(C((GH)I

JB;'
− C;'

3

+ $;'
3
t(C((GH)

$(
n
L'MNOPQ

'
(
E+,

(%-./
$(

0$RDL(OSTPQ
'
(
E+,

(%-./
$(

0$R

L'OSTPQ
'
(
E+,

(%-./
$(

0$RDL(MNOPQ
'
(
E+,

(%-./
$(

0$R
o
⎠

⎟
⎟
⎞
,

𝜉 = 4;'
$
6 𝑥$ + 4;(

$
6 𝑡$ .		

  (21) 

 
Case (1-2). When (𝜆3 − 4𝜇) < 0, 
 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝑢&,3(𝜉) =

⎝

⎜
⎜
⎜
⎛n

5BC;'(DE(5B;'FG;(D;'*B(C((GH)I

JB;'
o− C;'

3

+ $;'
3
t(GH(C()

$(
n
L'MNOQ

'
(
E+-.%,

(/
$(

0$R(L(OSTQ
'
(
E+-.%,

(/
$(

0$R

L'OSTQ
'
(
E+-.%,

(/
$(

0$RDL(MNOQ
'
(
E+-.%,

(/
$(

0$R
o
⎠

⎟
⎟
⎟
⎞

,

𝜉 = 4;'
$
6 𝑥$ + 4;(

$
6 𝑡$ .		

    (22) 
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Case (1-3). When (𝜆3 − 4𝜇) = 0, 
 

h
𝑢&,5(𝜉) = 85BC;'

(DU(&3B;';(
JB;'

9 − C;'
3
+ L($;'

L'DL(0$
,

𝜉 = 𝜉 = 4;'
$
6 𝑥$ + 4;(

$
6 𝑡$ .		

  (23) 

 
Case (2). 

{𝛼+ = 𝜆𝑘&, 𝛼& = 2𝑘&, 𝑘& = 𝑘&, 𝑘3 = −𝛿𝑘&5(𝜆3 − 4𝜇)} (24) 
 

Substituting (24) into (18), we have: 
 

z
𝑢(𝜉) = 𝜆𝑘& + 2𝑘& 8

.#
$/(0)

/(0)
9 ,

𝜉 = 4;'
$
6 𝑥$ − 4B;'

*VC((GHW
$

6 𝑡$ .		
  (25) 

 
Consequently, the exact solution of the of the nonlinear conformal fractional Sharma-Tasso-Olver 

equation (14) with the help of (13), are obtained in the followin form: 
Case (2-1). When (𝜆3 − 4𝜇) > 0, 

 

⎩
⎪
⎨

⎪
⎧
𝑢3,&(𝜉) = 𝛼𝑘&t

(C((GH)
$(

n
L'MNOPQ

'
(
E+,

(%-./
$(

0$RDL(OSTPQ
'
(
E+,

(%-./
$(

0$R

L'OSTPQ
'
(
E+,

(%-./
$(

0$RDL(MNOPQ
'
(
E+,

(%-./
$(

0$R
o ,

𝜉 = 4;'
$
6 𝑥$ − 4B;'

*VC((GHW
$

6 𝑡$ .		

 (26) 

 
 Case (2-2). When (𝜆3 − 4𝜇) < 0, 

 

⎩
⎪
⎨

⎪
⎧
𝑢3,3(𝜉) = 𝛼𝑘&t

(GH(C()
$(

n
L'MNOQ

'
(
E+-.%,

(/
$(

0$R(L(OSTQ
'
(
E+-.%,

(/
$(

0$R

L'OSTQ
'
(
E+-.%,

(/
$(

0$RDL(MNOQ
'
(
E+-.%,

(/
$(

0$R
o ,

𝜉 = 4;'
$
6 𝑥$ − 4B;'

*VC((GHW
$

6 𝑡$ .

 (27) 

 
Case (2-3). When (𝜆3 − 4𝜇) = 0, 

 

h
𝑢3,5(𝜉) =

3$;'L(
L'DL(0$

,

𝜉 = 4;'
$
6 𝑥$ .		

  (28) 

 

IV. PHYSICAL EXPLANATION AND INTERPRETATIONS OF THE SOLUTIONS 
In this section, physical representation of the obtained exact and solitary wave solution to nonlinear 

conformal fractional Sharma-Tasso-Olver equation (14). shall be discussed these solutions are graphically 
represented and their kind of solution verified. solutions 𝑢&,&(𝜉), 𝑢&,5(𝜉) and 𝑢3,&(𝜉) are of the kink type 
soliton solution (Fig. 1 only shows the shape of 𝑢&,&(𝜉) with 𝑘& = −√2, 𝑘3 = 4, 𝛿 = √2, 𝐶& = 𝜇 = 1, 𝐶3 =
2, 𝜆 = 2√2, 𝛼 = &

3
, Fig. 3 only shows the shape of 𝑢&,5(𝜉) with 𝑘& = 𝐶& = 𝜇 = 1, 𝑘3 = −1, 𝛿 = 2√3, 𝐶3 =

𝜆 = 2, 𝛼 = &
3
 and Fig.4 only shows the shape of 𝑢3,&(𝜉) with 𝑘& =

&
3
, 𝛿 = 𝐶& = 𝜇 = 1, 𝐶3 = 2, 𝜆 =

2√2, 𝛼 = &
3
). 

Solutions 𝑢&,3(𝜉), 𝑢3,3(𝜉), are the multiple bright and dark solitons solution (Fig. 2 only shows the shape 
of 𝑢&,3(𝜉) with 𝑘& = −1, 𝑘3 = 𝐶& = 1, 𝛿 = √3, 𝐶3 = 𝜆 = 𝜇 = 2, 𝛼 = &

3
, and Fig. 5 only shows the shape of 

𝑢3,3(𝜉) with 𝑘& = 𝐶& = 1, 𝛿 = &
3
, 𝐶3 = 𝑒, 𝜆 = 𝜇 = 2, 𝛼 = &

3
). 
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Fig. 1. 

𝑢&,&(𝜉) with 𝑘& = −√2, 𝑘3 = 4, 𝛿 = √2, 𝐶& = 𝜇 = 1, 𝐶3 = 2, 𝜆 = 2√2, 𝛼 = &
3
 . 

	
Fig. 2.	

𝑢&,3(𝜉)	with	𝑘& = −1, 𝑘3 = 𝐶& = 1, 𝛿 = √3, 𝐶3 = 𝜆 = 𝜇 = 2, 𝛼 =
1
2 .	

 

 
Fig. 3. 

𝑢&,5(𝜉) with 𝑘& = 𝐶& = 𝜇 = 1, 𝑘3 = −1, 𝛿 = 2√3, 𝐶3 = 𝜆 = 2, 𝛼 = &
3
. 
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Fig. 4. 

𝑢3,&(𝜉) with 𝑘& =
&
3
, 𝛿 = 𝐶& = 𝜇 = 1, 𝐶3 = 2, 𝜆 = 2√2, 𝛼 = &

3
. 

 

 
Fig. 5. 

𝑢3,3(𝜉) with 𝑘& = 𝐶& = 1, 𝛿 = &
3
, 𝐶3 = 𝑒, 𝜆 = 𝜇 = 2, 𝛼 = &

3
. 

 
REMARK, all solutions of this article have been checked with maple by putting them back into the 

original equation (16). 

V. CONCLUSION 
In this paper, several useful exact solutions of the nonlinear conformal fractional Sharma-Tasso-Olver 

equation are obtained by using the new conformal fractional 8
.#
$/(0)

/(0)
9 − expansion method. These solutions 

are algebraically verified using Maple and illustrated with their physical characteristics in some special 

cases, to show their ability to explain some physical phenomena. The new conformal fractional 8
.#
$/(0)

/(0)
9 − 

expansion method is direct, effective, and can be used to solve many other NFPDEs in mathematical 
physics. 

 

VI. DATA AVAILABILITY 
The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 
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