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Simulation techniques of Archimedean Copula
Estimators: Parametric and Semi-Parametric Approaches

N. Idiou and F. Benatia

Abstract — In this paper, we look at two different approaches
methodologies for copula estimation. The first is based on a
parametric approach using MLE and IFM methods, while the
second is entirely based on Kendall's tau and spearman’'s rho in
a semi-parametric context, where the margins are estimated
non-parametrically. Interestingly, based on R software
simulation techniques, the contribution of their algorithms,
approach, and illustration was our main focus for this paper. As
an application, a class of Archimedean copulas was notably
chosen. This particular class of copulas was also presented for
censored data to show the estimator’s performance even better.

Key words — Archimedean copula, Parametric estimation,
Simulation study, R software, Semi-parametric approaches.

I. INTRODUCTION

In mathematics, a copula is a function that serves as the
primary link between the multivariate distribution function
and its univariate margins, as proven by Sklar's theorem
(1959). Regardless of the shape of the margins, the action of
the copula is to represent the characteristics of dependence
that are associated with each of the random variables.

Under certain conditions, Sklar's theorem [14] shows that
there is a unique copula function C, which is given by:

F(Xq, ..., Xy) = C(Fl(xl), s Fn(xn)) 1)

where F(xq,..,%,)is the joint distribution of X =
(X4, ..., X;,) and F,(xy), ..., F,(x,) are the margins.

Nelsen [14], Genest and MacKay [9] describe a variety of
copula functions that can be used to fit a wide variety of
dependence types. Our concentration in this paper will focus
on the Archimedean copulas class for reasons of dependency
modeling and its approaches, particularly in actuarial science
and financial risk management, then our main reason for
focusing on this class is:

(1) they are easy to construct,

(2) have interesting properties that further facilitate the
modeling of dependency structures,

(3) a large variety of copula families belonging to this
class. They are often characterized by a generator, which is a
function, thus reducing the search for a large dimensional
distribution function (for more details about Archimedean
copulas see part (2).

Several methods for estimating copula parameters have
been developed, among the most important, the minimum
distance (MD) [17]), a function of margin inference (IFM)
[28], [29], the concordance methods based on [15], Genest,
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[23], also known as tau-inversion and rho-inversion, which
are based on Kendall’s tau and Spearman’s rho rank
correlation coefficients respectively, defined as:

t=P[(X” - X)) - X) > 0]
- P = x?)(x5” - X.¥) < o]

p =3 P04 X)) - %) >
- Pl - X) (¢ = XE) < o]}

where (X7, x{7), x@,xP), xP,xP) are  three
independent  (iid) copies of the bivariate random
vector (X;; X,). However, they may be represented as
follows:

(C) = 4] Clwdu—-1 (2)
[0,1]?

p(C) = IZJ Clwdu—-3 (3)
[0,1]2

which shows that Spearman’s rho and Kendall's tau depend
on the underlying copula C (they can be also considered as
moments of the copula). Subsequently, many other authors
were interested by copula families of the Archimedean class
for the application of these methods, due to their
mathematical structure and to their ease properties despite the
high dimensional level.

In copula approaches viewpoint and concerning their
estimate, if the margins F, ..., F4 are known, then we bring to
classic statistical inference methods. But, because the
margins are generally unknown, mainly two approaches can
be adopted for its estimations parametric and nonparametric.
Nevertheless, in the first approach we estimate the margins
parametrically, i.e., the resulting estimate of C will be entirely
parametric, we suppose that the marginal belongs to a family
indexed by a parameter, so to estimate the margins, it suffices
to estimate their parameter. Although in the other case the
margins will estimate non-parametrically, i.e., we do not
assume that the margins belong to any family, then it will be
semi-parametric copula estimation, for example with the
version of the empirical estimator given by:

n
- 1
R0 == gy )
k=1
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Therefore, the parameter of the copula must be estimated,
whatever the way we estimate the margins. Our focus for the
application is done on the Archimedean class of copulas in R
software, which is free statistical calculation software. It
works on all platforms and is available and has many existing
features characterized by contributed packages.

Writing an R package for copulas was natural, this package
(copula) mainly allows us to build and work easily with the
Archimedean Copulas [20] [10].

Among the package copula advantages is the evaluation of
the Archimedean copulas, currently widely used and well-
known as Ali-Mikhail-Haq, Clayton, Frank, Gumbel, and
Joe. Therefore, in regard to association measures, Kendall’s
tau and the coefficients of dependence are implemented.

In this paper, two approaches are presented for estimating
copulas, the parametric and semi-parametric one. In the first
approach, two methods are presented, the maximum
likelihood method (also known as the MLE method) and the
inference function method for margins (IFM), which simplify
the estimation procedure when the MLE method is
impracticable.

Even so, because the margins will be estimated non-
parametrically, a semi-parametric approach is required.
Nonetheless, for this type of estimation, the method of
moments based on Kendall's tau and Spearman's rho is
presented. For the reasons stated previously, the class of
Archimedean copulas was selected as an application.
However, the purpose of this paper is to introduce this type
of copula, as well as its applications, methodology, and
visualization in R software.

The remaining sections of the paper are organized as
follows. In section two, some basic concepts concerning
copula and their characterization have been presented,
notably the Archimedean copulas. Two methods of copula
estimation using parametric approaches are presented in
section three, where the margins have been parametrically
estimated. In section four, where the margins are estimated
non-parametrically, a semi-parametric estimation was
presented using the method of moments based on Kendall's
tau and Spearman's rho, respectively. In part five of the paper,
we used the MLE estimator to introduce the log-likelihood
function and the estimation of a copula using two stages
dedicated to this method using censored data. Part six
includes a conclusion and discussion. For illustration, the
Appendix interacts with a key in R.

Il. ARCHIMEDEAN COPULAS AND THEIR
CHARACTERIZATION

The mathematical properties of the Archimedean class are
characterized by a generator function as we have already
said. Let u = (uy, ..., uq) a d-dimensional unit vector,
whereu € [0,1]¢ and assuming that ¢ a mapping defined by:

@: [0, 0] = [0,1] (4)
called a generator and satisfies the following conditions:

- () =0 (5)
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- @ is continuous, convex, decreasing function, i.e.,

() < 0and@'(t) > 0,for0 <t<1) (6)

An Archimedean copula is a copula of the form:

Cw) = @@~ (uy) + -+ @7 (ug) (7)

where ¢~1 is the inverse function of the generator ¢, that can
be indexed by the association parameter 6, thus a whole
family of copulas can be Archimedean. Notice that, one of the
nice properties of Archimedean copula is that the
distributions  function  Kg(t) = P(Cg <t)ofCy can
represents according to its generator, where Cqis the
empirical version of C. See Theorem 4.3.4 in Nelsen [14],
then for any t € [0,1], we have:

_ . ©9e(®
BN G

Therefore, the corresponding density is:

K'o () = @ egt)@egt)
(@)

In order for (7) to be a copula, the generator must be a d-
monotonic function see Kimberling (1974) in particular
reference to t-norms, Hofert [27] in respect of copula
reworking.

Therefore, for any function ¢ which satisfies conditions (5)
and (6) we can say that a function of the form (7) is an
Archimedean copula if and only if ¢ € ®, where

® = [0,%] — [0,1] and ¢ is d-monotone. The advantage
of using Archimedean copulas in mathematics is the
realization of dimensionality reduction, while the copula of
n-variables is a function with n-places, the generator ¢ never
takes only one argument. In the bivariate case, the means by
which ¢ generates the copula is according to:

o(Cu,v) = o) + () (8)

If p(0) = oo, the generator is termed strict, and the inverse
function ¢~ exists. In this case, from (8), the copula is
recovered by:

Cu,v) = ¢~ (@) + o(v))

Hence, the non-strict generators are those for which
(p(0) < w), we say that the generators have a singular
component, in this case we must begin by defining a pseudo-
inverse function ¢~1. As an example:

e() =1—t,-> @ 1(t) = max (1 —t;0),

Noted that:

o HoW) + @) =max(u+v-—1;0) =W

The lower Frechet bound for (bivariate) copulas is
Archimedean. For more details on Archimedean copulas
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(strict and not strict), see Nelsen [14], Genest and MacKay
[9], Genest and Rivet [8], Jouini and Clemen [30], Mari and
Kotz [12]. Many applications on Archimedean copula have
been discussed in finance, actuarial science, see [18] who
uses Archimedean copulas to induce dependence among
random variables.

Examples of families of Archimedean copulas are listed in
Table I. An immediate consequence of the definition of d-
monaotonicity is that, in the bivariate case, C in (7) is a copula
if and only if ¢ € @ is convex. Furthermore, a generator ¢ €
O generates an Archimedean copula in arbitrary dimensions
if and only if ¢ is completely monotone.

We focus here on the latter case, where the complete
monotonicity is fulfilled by several commonly used
parametric generators (Archimedean copula for example).

TABLE I: FAMILIES OF BIVARIATE ARCHIMEDEAN COPULAS

EJ-MATH, European Journal of Mathematics and Statistics
ISSN: 2736-5484

measures are cited as association measures and are generally
studied in the bivariate case. Kendall's tau is one of those
measures, for a vector (X,Y) is given by:

T = E[sing((X; — X2)(Y; — Y2))]
T=P[X; —Xu)(Y; - Y,) > 0] -
P[(X; —X2)(Y; — Y;) < 0]
where (X;,Y;) and (X,,Y,)are independent identically

distributed copies of the vector (X,Y) and called the signum
function:

sing(x) = 1(g,00)(X) — 1(—0,0)(X)

In a different way, the Kendall’s tau is defined as the

probability of concordance less the probability of discordance
[16], it measures, as a number in [—1, 1].

i Parameters
Family Copulas e
uv
AMH 1-61-wA-v) 6€[0,1)
@e+v? -1
—-67ln (1
(e -1 -1)
: o
—((— 2] €(0,0
G exp (—=(( ln(g)) bt o)
J + (= In(v))?)%) fe[1.)

1
- (1-wf + (1-v)°?

- (1—w)° (1-v)%)7)

Therefore, by principle an Archimedean copula can
typically be expressed in terms of their generators, i.e.,
generated by a twice continuously differentiable generator
with:

@) > 0,t€[0,1).
Then, Kendall’s tau can be represented as:

Lot 1t
PO 4o e LA O

T=1+4+4

Table I represents particular Archimedean copulas families
(completely monotone) and the expressions of their
corresponding generators, the families of Ali-Mikhail-Hag
(AMH), Clayton (C), Frank (F), Gumbel-Hougaard (G) and

1
=1+4J-
0

0 @'V e ()
For the proof see [14].

TABLE II: KENDALL’S TAU FOR THE ARCHIMEDEAN COPULAS

Joe (J) (See also Hofert [26]). Family Copulas © interval -
The parameter 6 can vary only in (0,). The latter is the AMH  1-(2(8 + (1 -6)*In(1-6)))/36* —01817 <7<z
range for which the Clayton and Frank generators are 8/(0+2)
completely monotonous. Also note that for the Ali-Mikhail- € 1+ (4(D,(6) - 1))/ 0=s7<l1
Haq family, Kendall's range of attainable tau is limited g . e-1/e —01<srr<<11
in[0,1/3). _ L <
[0,1/3) 3 1 4;(k(9k+2)(0(k_1)+2)) 0<r<1
' — Igfm?: o Table 11 represent the Kendall’s tau for each family given
Frank

Gumbel-Hougaard
Joe

08

psif 1]

04

10

Generator as a function of t

Fig. 1. Archimedean generators listed in Table 1.

Measuring dependence between two random variables or
more (also called a generalized correlation) often becomes
necessary in most useful applications on copulas. These
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in Table I for Archimedean copulas.
For example, for the Clayton family, t = 9%2 then this

family covers 0 < t < 1, where the quantity D, is the Debye
function of order one, defined by:

0t dt
D.(®) = [, o100 € 10, [,
I1l. RESULTS

The estimation of copula parameters is the main focus of
this section, even by way, over the first case, the estimation
of the copula C is completely parametric, and it is assumed
that the margins belong to a parameter-indexed family.
Hence, in order to estimate their parameters, it is sufficient to
estimate the margins. To hold this estimate, it is desirable to
parameterize the copula function for statistical modeling
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purposes, for a reason that data can be used to shed light on
the extent of the association between the random variables.

Assume that the copula C belongs to a continuous
parametric family {Cq: 6€0}, where © the open subset of
RP for some integer p > 1 represent the parameter space 6,
denote the bivariate distribution association parameter
(possibly a vector). Then the copula is assumed to be
parameterized asCgq (i.e., a copula that belongs to this
family).

This notation designates a family of copulas, where the
margins F;and F, are generally independent of .

Even so, estimate Cq amounts to estimating the vector of
unknown parameters, generally carried out in two steps:

e Stepl: margins-based estimation.
e Step 2: copula-based estimation to estimate its
parameters.

By using the maximum likelihood estimator (MLE) firstly
then certain likelihood functions are to be maximized.
Sometimes, this likelihood cannot be maximized. However,
another strategy can propose on the margins called the
Inference function method for margins (IFM), which
overcame this problem.

A. Maximum Likelihood Estimator (MLE)

Let B be the vector of marginal parameters and 6 be the
vector of copula parameters. Given the relatively simple
functional form the self-selection likelihood function under
an Archimedean copula, MLE can be employed to jointly
estimate all parameters of the unknown parameters vector
(B1, .-, Bq, 8) at the same time. Assume that we observe d-
independent realizations (Xil, ...,Xip), i=1,..,d, specified
by pmargins with (CDF) cumulative distribution function F;.
However, the density of Fdefined by the formula (1) is given

by:
f(x1, ., Xq; 0)

d
= co(F1p,(X1), - Fap, (xa)); 6) 1_[ fig, (x1)(9)

That is associated with a sample (Xiy, ..., Xjp ), Where cg is
a density of a parametric copula Cq and fig.is a density of
Fig, -

Both approaches presented seek to maximize a likelihood
approximation based on (9). Consequently, the parameter
vector to be estimated in the parametric approach isa =
(B, 8) and the function of loglikelihood is given by:

n
1(B1 ) Ba, 0) = Z logeg{Fy g, Xi1), ) Fa gy Xia); 6}
=t d n
=1 i=1
However, the MLE of 6 will given by:

By = argmaxl(0), where 6 € 0.

See, Lehmann and Casella [11] for more details. Under a
specific copula model, the likelihood function is to be
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evaluated in R software by using “loglikCopula” and
“loglikMvdc” packages. However, the “loglikis”most
commonly used for a model fitted by maximum likelihood.

To illustrate, let choose C as a bivariate Archimedean
copula (dimensiond = 2), where the margins F, and F,are
distributed under Normal (N(w,6%)) and exponential
(exp(A)) distributions respectively. By the way, the
representation of these multivariate distributions F; (j =
1;2in our case) can be done by using the “mvdc()”
packages.

Since, the “fitMvdc” function is a wrapper for routine
optimization in R, then to obtain the maximum likelihood
estimator, a function “fitMvdc () was selected.

The results obtained in TABLE Il are established for the
four most famous families of Archimedean copulas. From a
sample of 1000 independent observations of such distribution
with parameters margins:

By =(u=0,6>=1andp, =1=1,
where the copula parameter is chosen 6 = 2.

TABLE Ill: ARCHIMEDEAN COPULA PARAMETERS ESTIMATION VIA MLE

. N . ~ N Maximized
Family i u M 0 log likelihood
Clayton 00047 09752 10290 1955 ~1935

Frank  -0.0021 09762 09597 1778 —2398
Gumbel  -0.0556 10010 10040  1.990 —2040
Joe 00235 10098 09984  2.030 —2189

A richer performance includes standard marginal and
copula parameter errors estimates that can be acquired by
asking summary. See the following table:

TABLE IV: STANDARD ERRORS ESTIMATES PARAMETERS VIA MLE

fi Std.

Family Error & Std. Error A Std. Error 8 Std. Error
Clayton 0.026 0.016 0.032 0.09
Frank 0.030 0.022 0.03 0.196
Gumbel 0.031 1.019 0.031 0.059
Joe 0.032 1.021 0.031 0.08

In the parametric approach, through the use of a maximum
likelihood estimator, the margins are estimated
parametrically. Sometimes, this likelihood can be
complicated and impossible to calculate, where the numerical
optimization is available, and it might be too difficult. In
these situations, another technique can propose to overcome
this complication, generally called the IFM method which
proceeds in two stages (the reader is invited to refer to the
(IFM) method and the parametric MLE method).

B. Margin Inference Function Method (IFM)

This method was introduced by Xu [29] and Joe [16] in a
general framework. He called the inference function method
for margins (IFM) because estimation functions relate to
likelihood score functions (univariate or multivariate).

The IFM was used primarily for multivariate models in
which a multi-parameter numerical optimization for
maximum likelihood estimation is unattainable or takes a too
long time if we talk about a time-consuming viewpoint.
Therefore, the estimation by the IFM method can be
decreased the computational load potentially associated with
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the estimation of the maximum likelihood. Hence, this
method proceeds in two stages:
e Stage 1: Estimate the margins parameters firstly.
e  Stage 2: fix the marginal parameters obtained in the
first stage, and then estimate the copula parameters.
See Joe [28], [29]. By analogy, the unknown margins
parameter vectors (8, ..., Bq) are first estimated by:

n
B,; = argsup (Z logfj,ﬁj (Xi]-)> ,Wheref,; € RPi

i=1

Forj =1, ...,d. By the way in the second stage, estimating
the vector of the unknown copula parameter 6 is performed

by:

Oem =

n
argsup (Z logcy (Fl,ﬁn_l (X1), «e- s Fag, 4 (xq)); 6)) ,

=1

where 8 € ©. The main advantage of this approach is that this
method (IFM) is done in two stages. Wherever, under the
MLE estimate, when models are usually multivariate, the
number of parameters increases, and the numerical
optimization becomes more complicated. Also, for some
models, multi-dimensional numerical integration is needed,
and this becomes increasing difficult, for the theoretical
properties of the IFM method see [28].

To illustrate, we take into account the same setting used in
the MLE estimation. The key R function is “fitCopula ()”
with argument “method = "ml"”.

TABLE V: ARCHIMEDEAN COPULA PARAMETERS ESTIMATION VIA IFM

Maximized
Family 0 Std. Error Log
likelihood
Clayton 1.956 0.086 425.8
Frank 1.779 0.195 41.77
Gumbel 1.98 0.051 3600
Joe 2.021 0.065 2334

If the margins are carelessly specified, the estimate will be
biased. Hence, despite the advantages of the IFM, we mention
that this method does not prevent it from suffering the same
disadvantage as an estimate of the maximum likelihood. The
proof of this phenomenon was obtained in Fermanian and
Scaillet [31] and Kim et al. [32].

In the semi-parametric approach, we do not assume that the
margins (F;, ....., F;) belong to any parametric family. Then,
we estimate them directly by the nonparametric estimator
given by (4). Therefore, we replace the margins by their
estimate in (9), to estimate 6, and we maximize the part of the
likelihood involving 6. For more details, see [7].

The consistency of the estimator it is asymptotically
normal under some conditions. However, despite these
properties of convergence, it is not, in general efficient,
except in the case of the bivariate Gaussian copula. See [6],
[32].
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IV. SEMI-PARAMETRIC ESTIMATION METHODS FOR COPULA

In the previous section, we established parametric methods
to estimate copula parameters, where the estimation
constructed on the margins is completely parametric. In this
section, we focus on non-parametric estimation of these
margins by using a moment’s estimator, performed on
coefficients of dependency (Kendall’s tau and Spearman’s
rho), which leads us to pass automatically to a semi-
parametric approach. By the same way, the application is
made on Archimedean copulas.

A. Copula Estimation via Moment Estimator Based on
Kendall’s Tau and Spearman’s Rho

The estimation methods based on the correlation
coefficients of Spearman's rho or Kendall's tau rank are called
tau-inversion methods (respectively, rho-inversion) or
concordance method (mentioned in part one), take advantage
of the relationship between these coefficients of dependency
and the parameter of the copula 0. Early references on the
former in a copula setting are, among others, Oakes [15],
Genest [23], Genest and Rivest [8].

We have seen the definition of the dependency coefficients
given by formulas (2) and (3). However, for the pair (X;, X;)
the empirical version of these coefficients is given by:

A ny~1 . I 1
= (2) Z sign(X® — Xi())(Xj(p) - Xj())

7@  F\ 5@
B=1(U1 - Ul) (U] - U])

1
~P) = ~P)  F\y2
g=1(U1 —U))? 3=1(U1 - U])22

TP _ 5y ® = o
whereU,” = Fi(X{"") and U, = Y5, - ,i=1,..,dand:

sign(x) =1 |x >0
sign(x) = —1[x < 0
sign(x) =0 |[x=0

Then, the estimators 0 obtained by tau-inversion methods
(respectively, rho-inversion methods) are given respectively

by:
{1‘(@) = %;;then 8 = T (%;)))
p(8) = pijthenp = p~(pi;))

where 11 and p~tare the inverses of T and p respectively, if
they exist.

In the bivariate case (d = 2) and when there is only one real
parameter to estimate, the tau-inversion method applies to
match the estimate under the model with its empirical
estimate. Therefore, the estimator 9 satisfies:

1(0) =2, , then & = T1(&;))
These two estimators are consistent and asymptotically

unbiased. Noted that the inversion method of Kendall's tau or
Spearman's rho is belonging to a semi-parametric approach,
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since the expressions of their empirical version for margins

Fi, ... F; are implicitly estimated non-parametrically by (4).
Therefore, if we suppose that C is the family of Gumbel

copulas, then the estimator of 6 by the tau-inversion method:

1
1-%

1(Co) = 1 —g and B=11(%) =

In R software, the name of the function corresponding to
v Lis iTau().

To illustrate, we suggest that the copula selected is
belonging to a bivariate Archimedean family with a single
parameter 6 = 2, where the margins are distributed under a
standard normal. To applied, let a 1000 independent
observations the following table summarizes our application
inR:

TABLE VI: ESTIMATION OF ARCHIMEDEAN COPULA PARAMETERS VIA THE
METHOD OF MOMENTS BASED ON KENDALL’S TAU

Family T theo value Std. Error 0 estimate
Clayton 0.5026 0.068 2.027
Frank 0.1909 0.031 1.7708
Gumbel 0.4939 0.065 1.9760
Joe 0.3551 0.048 2.000

By the use of a standard error, we find the values
corresponding across each copula indicated in the last
columns of the previous table. By analogy using the same
propositions as the previous one when the estimate is based
on Spearman’s rho. The results of the application are
summarized in Table VII:

TABLE VII: ESTIMATION OF ARCHIMEDEAN COPULA PARAMETERS VIA
THE METHOD OF MOMENTS BASED ON SPEARMAN’S RHO

Family T theo value Std. Error 0 estimate

Clayton 0.6840 0.019 2.0078
Frank 0.2843 0.030 1.7763

Gumbel 0.6756 0.019 1.9746

The censored and uncensored samples (artificial data) for
a type of non-Archimedean copula (bivariate Gaussian
copula) are presented in the following figures.

V. APPLICATION: MLE ESTIMATOR FOR CENSORED DATA

A. Application for non-Archimedean Copula

When the variables contain censored observations (either
left, right, or interval censoring), the copula is illustrated also
by a two-step parametric MLE approach:

- Estimate the marginal parameters.
- Set the marginal parameters to the estimated values
in the first step, then estimate the copula parameters.

A bivariate (non-Archimedean) copula fits the R code
presented in the appendix to the data where one of the
variables contains censored observations. However, all
functions are required by the two parametric stages MLE
estimation method to fit a copula.

The packages copula, “MASS”, “survival”, “SPREDA”
are needed by all the procedures in R, therefore we make them
installed and loaded by the “install.packages(.)”” and “library”
functions respectively.
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The function for computing the log-likelihood in censoring
is given by “loglikCensored”. To illustrate, we generate some
artificial data using a non-Archimedean copula (bivariate
Gaussian copula), for a censored observation that will
subsequently be treated as right-censored cases.

Assume that the first marginal is a normal distribution
N(mean = 5,sd = 0.8), and the second marginal is a
Weibull distribution with parameters (location=2.4 and
scale=1.3). The censored and uncensored samples (artificial
data) for a type of non-Archimedean copula (bivariate
Gaussian copula) are presented in the following figure.

© censored
8 @ uncensored

40

20

10

Fig. 2. Censored and incensored artificial data for a bivariate
Gaussian copula.

We are now interested by illustrating a Gaussian copula
based on the MLE parametric estimation method, also known
as the functions of the margin method inference (MFI) in
some situations. Where we adjust the marginal in the first
stages, then, in stage two we fix the marginal parameters and
estimate the parameter of the copula.

In order to visualize the Gaussian copula log-likelihood
functions, Fig. 3 shows the visualization of the logarithmic
likelihood function used to estimate bivariate Gaussian
copula parameters under right artificial censoring data. By the
way, we include the MLE, confidence interval, and the true
value for the copula parameter.

S K

-400 -200
1 1

log-likelihood

-600
|

-=- MLE
--- 95% confidence interval
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Fig. 3. Fitting a bivariate Gaussian copula under right censoring data.
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B. Application for an Archimedean Copula

In this part of the paper, we are focused on an Archimedean
copula family, where the data is arbitrarily censored by the
same way using a bivariate Gumbel copula with parameter 3
to generate artificial data.

Assuming that the first marginal is distributed under
normal distribution N(mean = 5,sd = 0.8), and the second
marginal is distributed under a Weibull distribution with
parameters (location=2.4 and scale=1.3).

Then, the same procedure will apply to the rest of the
programs we saw previously, see appendix.

< censored
2 uncensored

80

40

X
Fig. 4. Censored and incensored artificial data for a bivariate Gumbel
copula.

However, to visualize Gumbel’s copula log-likehood
functions. Fig. 5 shows the visualization of a logarithmic
likelihood function used to estimate bivariate Gumbel copula
parameters under censoring observations (arbitrary
censoring).

By the way, we are including the MLE, confidence
interval, and the true value for the copula parameter.
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Fig. 5. Fitting a bivariate Gumbel’s copula under arbitrary censoring.

When we use the two-stages of the IFM estimation method,
the standard error for the copula parameter is normally
underappreciated (i.e., too small). The reason for this
underappreciated is that the marginal IFM was set during the
second step of the adjustment process. Therefore, when
estimating the copula parameter at this second stage, it does
not consider the margins.
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VI. CONCLUSION

Two approaches are generally used for estimating copulas,
the parametric and semi-parametric one. In the first case, the
resulting estimate of C will be completely parametric, we
assume that the marginal belongs to a parameter-indexed
family, so it is sufficient to estimate their parameter in order
to estimate the margins parametrically. Even, if it will be a
semi-parametric approach, we dont assuming that the
margins belong to any family, so the margins will be
estimated non-parametrically.

In this paper, we are interested by the two approaches,
where two estimators for this approach are proposed. The
maximume-likelihood is called also the MLE method and the
inference function method for margins (IFM) which
simplifies the estimation procedure when it is impracticable
by the MLE method.

Even so, for a semi-parametric approach, the method of
moments based on Kendall’s tau and Spearman’s rho is
presented. An extension of the copula moment method,
regarded as a generalization of the tau-inverse method, has
been presented in a generalized context.

As an application of the MLE estimator, two classes of
Archimedean and non-Archimedean copulas were
introduced. The first class was chosen because of its number
of interesting properties and the efficiency of its results. In
addition, the second class was chosen to be compared with
the first.

Hence the purpose of this paper is to present a particular
class of copulas (Archimedean), their uses, and their
approach in statistics. However, their illustration in the R
language-focused mainly on the semi-parametric approach, it
was discussed in part five of the paper under censored data to
introduce the log-likelihood function and the estimation of a
copula using two stages consecrated for this method.

One of the perspectives is the modeling of this class of
copula-based on the CM’s estimator in the case of censored
data.

APPENDIX

As an illustration in R software, the key function for the
maximum likelihood:

e The illustration of the maximum likelihood
estimator to illustrate the Gumbel copula needs at
first to assert the function gumbelCopula() with the
real value of parameter.

e To illustrate the margins as N(u =0,02 =
1)) andexp(1 = 1)), it is enough to assert the
mvdc() function.

e To maximize a loglikelihood function you need to
use the fitMvdc() for illustration.

The key function for the moment estimator Based on
Kendall’s Tau and Spearman’s Rho:

e The illustration of the moment estimator Based on
Kendall’s Tau and Spearman’s Rho needs the same
procedure given above for margins, except that the
function used to the corresponding copula parameter
estimate is iTau() and iRho() respectively.

e However, the standard error is returned by the
function summary().
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Application on non-Archimedean copula under censoring
data:
e Foracensored and incensored artificial data using a
bivariate Gaussian copula, we generate the margins

distribution by mvdc(copula=..., c¢("norm",
"myWeibull"), list(list(mean=..., sd=...),
list(location=..., scale=...))). Where the first

marginal is a normal distribution, and the second
marginal is a Weibull distribution.

e Tovisualize the copula: we draw sample, inspect the
generated data and we apply random censoring to
the observations by select rmyWeibull() function,
then ifelse(xy[,2]> censored, O, 1) where xy[,2] <-
pmin(xy[,2], censored). Hence, the censored
observations will subsequently be treated as right
censored cases.

e To plot the censored data we assert the plot()
function, as well as, we choose the legend and the
col.

To fit a bivariate Gaussian copula to the artificial data by
means of the two-stage estimation method.

e Stage 1: fit the marginal’s, and obtain the marginal
parameters by:

(normMLE<- fitdistr())
normMeanl <- normMLES$estimate
normSD1 <- normMLES$estimate
(weibullMLE<- survreg())
weibullLocation2 <- coef(weibullMLE)
weibullScale2 <- weibullMLE$scale
Compute the cumulative probabilities for the
marginal’s bycbind(pnorm(),
pmyWeibull()) function.

e Stage 2: fix the parameters of the marginal’s and
estimate the copula parameter by:

Starting value for the copula parameter:

tauEst<- sin(cor(..., ..., method="kendall")*pi/2)).
fitGaussian<- optim(tauEst, loglikCensored,
method="BFGS", copula=...,)

Apply MLE for the copula parameter using
fitGaussian$par function.

e To visualize the logarithmic likelihood function
used to estimate the parameter of the copula, we
need to select the Kendall’s tau value taus<- seq(-1,
0, length.out=100).

e By the way, when data is censored the R key for
copula is loglikCensored(), liks<- sapply(taus,
function() loglikCensored(param=.., copula=..,).
Then we call the function plot(taus, liks, type=..,
xlab="...", ylab="...").

e To include the MLE for the copula parameter we
declareabline(v=fitGaussian$par) function.

e To include the confidence interval for the copula
parameter we declare abline(v=ci) function.

e To include the true value for the copula parameter
we assert abline(v=myCop@parameters) function.

e Toadd a legend we assert legend() function.

Application for an Archimedean copula under censoring:
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By the same way, using in non-Archimedean copula we
just need to change the Gaussian copula by the corresponding
Archimedean copula.
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