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Abstract — In this paper, we look at two different approaches 

methodologies for copula estimation. The first is based on a 

parametric approach using MLE and IFM methods, while the 

second is entirely based on Kendall's tau and spearman's rho in 

a semi-parametric context, where the margins are estimated 

non-parametrically. Interestingly, based on R software 

simulation techniques, the contribution of their algorithms, 

approach, and illustration was our main focus for this paper. As 

an application, a class of Archimedean copulas was notably 

chosen. This particular class of copulas was also presented for 

censored data to show the estimator's performance even better. 

 
Key words — Archimedean copula, Parametric estimation, 

Simulation study, R software, Semi-parametric approaches. 

 

I. INTRODUCTION 

In mathematics, a copula is a function that serves as the 

primary link between the multivariate distribution function 

and its univariate margins, as proven by Sklar's theorem 

(1959). Regardless of the shape of the margins, the action of 

the copula is to represent the characteristics of dependence 

that are associated with each of the random variables. 

Under certain conditions, Sklar's theorem [14] shows that 

there is a unique copula function C, which is given by: 

 

F(x1, … , xn) = C(F1(x1), … , Fn(xn))     (1) 

 

where F(x1, … , xn) is the joint distribution of 𝑋 =
(𝑋1, … , 𝑋𝑛) and F1(x1), … , Fn(xn) are the margins. 

Nelsen [14], Genest and MacKay [9] describe a variety of 

copula functions that can be used to fit a wide variety of 

dependence types. Our concentration in this paper will focus 

on the Archimedean copulas class for reasons of dependency 

modeling and its approaches, particularly in actuarial science 

and financial risk management, then our main reason for 

focusing on this class is:  

(1) they are easy to construct,  

(2) have interesting properties that further facilitate the 

modeling of dependency structures,  

(3) a large variety of copula families belonging to this 

class. They are often characterized by a generator, which is a 

function, thus reducing the search for a large dimensional 

distribution function (for more details about Archimedean 

copulas see part (2). 

Several methods for estimating copula parameters have 

been developed, among the most important, the minimum 

distance (MD) [17]), a function of margin inference (IFM) 

[28], [29], the concordance methods based on [15], Genest, 
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[23], also known as tau-inversion and rho-inversion, which 

are based on Kendall’s tau and Spearman’s rho rank 

correlation coefficients respectively, defined as:  

 

τ = P[(X1
(1)

− X1
(2)

)(X2
(1)

− X2
(2)

) > 0]

− P[(X1
(1)

− X1
(2)

)(X2
(1)

− X2
(2)

) < 0] 

 

ρ = 3 {P[(X1
(1)

− X1
(2)

)(X2
(1)

− X2
(3)

) > 0]

− P[(X1
(1)

− X1
(2)

)(X2
(1)

− X2
(3)

) < 0]} 

 

where (X1
(1)

, X2
(1)

), (X1
(2)

, X2
(2)

), (X1
(3)

, X2
(3)

) are three 

independent (iid) copies of the bivariate random 

vector (X1;  X2).  However, they may be represented as 

follows: 

τ(C) = 4 ∫ C(u)du − 1
0

[0,1]2
    (2) 

 

ρ(C) = 12 ∫ C(u)du − 3
0

[0,1]2
   (3) 

 

which shows that Spearman’s rho and Kendall's tau depend 

on the underlying copula 𝐶 (they can be also considered as 

moments of the copula). Subsequently, many other authors 

were interested by copula families of the Archimedean class 

for the application of these methods, due to their 

mathematical structure and to their ease properties despite the 

high dimensional level. 

In copula approaches viewpoint and concerning their 

estimate, if the margins F1, … , Fd are known, then we bring to 

classic statistical inference methods. But, because the 

margins are generally unknown, mainly two approaches can 

be adopted for its estimations parametric and nonparametric. 

Nevertheless, in the first approach we estimate the margins 

parametrically, i.e., the resulting estimate of C will be entirely 

parametric, we suppose that the marginal belongs to a family 

indexed by a parameter, so to estimate the margins, it suffices 

to estimate their parameter. Although in the other case the 

margins will estimate non-parametrically, i.e., we do not 

assume that the margins belong to any family, then it will be 

semi-parametric copula estimation, for example with the 

version of the empirical estimator given by: 

 

F̂i(x) =
1

n
∑ I{Xk≤x𝑖}

n

k=1

(4) 
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Therefore, the parameter of the copula must be estimated, 

whatever the way we estimate the margins. Our focus for the 

application is done on the Archimedean class of copulas in R 

software, which is free statistical calculation software. It 

works on all platforms and is available and has many existing 

features characterized by contributed packages.  

Writing an R package for copulas was natural, this package 

(copula) mainly allows us to build and work easily with the 

Archimedean Copulas [20] [10].   

Among the package copula advantages is the evaluation of 

the Archimedean copulas, currently widely used and well-

known as Ali-Mikhail-Haq, Clayton, Frank, Gumbel, and 

Joe. Therefore, in regard to association measures, Kendall’s 

tau and the coefficients of dependence are implemented. 

In this paper, two approaches are presented for estimating 

copulas, the parametric and semi-parametric one. In the first 

approach, two methods are presented, the maximum 

likelihood method (also known as the MLE method) and the 

inference function method for margins (IFM), which simplify 

the estimation procedure when the MLE method is 

impracticable.  

Even so, because the margins will be estimated non-

parametrically, a semi-parametric approach is required. 

Nonetheless, for this type of estimation, the method of 

moments based on Kendall's tau and Spearman's rho is 

presented. For the reasons stated previously, the class of 

Archimedean copulas was selected as an application. 

However, the purpose of this paper is to introduce this type 

of copula, as well as its applications, methodology, and 

visualization in R software. 

The remaining sections of the paper are organized as 

follows. In section two, some basic concepts concerning 

copula and their characterization have been presented, 

notably the Archimedean copulas. Two methods of copula 

estimation using parametric approaches are presented in 

section three, where the margins have been parametrically 

estimated. In section four, where the margins are estimated 

non-parametrically, a semi-parametric estimation was 

presented using the method of moments based on Kendall's 

tau and Spearman's rho, respectively. In part five of the paper, 

we used the MLE estimator to introduce the log-likelihood 

function and the estimation of a copula using two stages 

dedicated to this method using censored data. Part six 

includes a conclusion and discussion. For illustration, the 

Appendix interacts with a key in R. 

 

II. ARCHIMEDEAN COPULAS AND THEIR 

CHARACTERIZATION 

The mathematical properties of the Archimedean class are 

characterized by a generator function as we have already 

said. Let u = (u1, … , ud) a d-dimensional unit vector, 

whereu ∈ [0,1]d and assuming that φ a mapping defined by: 

 

                     φ: [0, ∞] → [0,1]                        (4) 

 

called a generator and satisfies the following conditions: 

 

- φ(1) = 0                                                               (5) 

 

- φ is continuous, convex, decreasing function, i.e., 

 

(φ′(t) <  0 𝑎𝑛𝑑 φ′′(t) >  0, 𝑓𝑜𝑟 0 < 𝑡 < 1)    (6) 

 

An Archimedean copula is a copula of the form: 

 

C(u) = φ(φ−1(u1) + ⋯ + φ−1(ud))  (7) 

 

where φ−1 is the inverse function of the generator φ, that can 

be indexed by the association parameter θ, thus a whole 

family of copulas can be Archimedean. Notice that, one of the 

nice properties of Archimedean copula is that the 

distributions function  Kθ(t) = P(Cθ ≤ t) of Cθ  can 

represents according to its generator, where Cθ is the 

empirical version of C. See Theorem 4.3.4 in Nelsen [14], 

then for any t ∈ [0,1], we have: 

 

Kθ(t) = t −
φθ(t)

φ′θ(t)
 

 

Therefore, the corresponding density is: 

 

K′θ(t) =
φ′′θ(t)φθ(t)

(φ′
θ

(t))2
 

 

In order for (7) to be a copula, the generator must be a d-

monotonic function see Kimberling (1974) in particular 

reference to t-norms, Hofert [27] in respect of copula 

reworking.  

Therefore, for any function φ which satisfies conditions (5) 

and (6) we can say that a function of the form (7) is an 

Archimedean copula if and only if  φ ∈ Θ,   where  
Θ =  [0, ∞] → [0,1]  and  φ is d-monotone. The advantage 

of using Archimedean copulas in mathematics is the 

realization of dimensionality reduction, while the copula of 

n-variables is a function with n-places, the generator φ never 

takes only one argument. In the bivariate case, the means by 

which φ generates the copula is according to:  

 

φ(C(u, v)) = φ(u) + φ(v)  (8) 

 

If φ(0) =  ∞, the generator is termed strict, and the inverse 

function φ−1 exists. In this case, from (8), the copula is 

recovered by: 

 

C(u, v) = φ−1(φ(u) + φ(v)) 

 

Hence, the non-strict generators are those for which 

(φ(0) < ∞), we say that the generators have a singular 

component, in this case we must begin by defining a pseudo-

inverse function φ−1. As an example: 

 

φ(t) = 1 − t, → φ−1(t) = max (1 − t; 0), 

 

Noted that: 

 

φ−1(φ(u) + φ(v)) = max(u + v − 1; 0) = 𝑊 

 

The lower Frechet bound for (bivariate) copulas is 

Archimedean. For more details on Archimedean copulas 
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(strict and not strict), see Nelsen [14], Genest and MacKay 

[9], Genest and Rivet [8], Jouini and Clemen [30], Mari and 

Kotz [12]. Many applications on Archimedean copula have 

been discussed in finance, actuarial science, see [18] who 

uses Archimedean copulas to induce dependence among 

random variables. 

Examples of families of Archimedean copulas are listed in 

Table I. An immediate consequence of the definition of d-

monotonicity is that, in the bivariate case, C in (7) is a copula 

if and only if φ ∈ Θ is convex. Furthermore, a generator φ ∈
Θ generates an Archimedean copula in arbitrary dimensions 

if and only if φ is completely monotone.  

We focus here on the latter case, where the complete 

monotonicity is fulfilled by several commonly used 

parametric generators (Archimedean copula for example). 

 
TABLE I: FAMILIES OF BIVARIATE ARCHIMEDEAN COPULAS 

Family Copulas   
Parameters

pace 

AMH 
𝑢𝑣

(1 − 𝜃(1 − 𝑢)(1 − 𝑣))
   𝜃𝜖[0,1) 

C 

F 

G 

J 

(𝑢−𝜃 + 𝑣−𝜃 − 1)
−1

𝜃  

−𝜃−1𝑙𝑛 (1

+
(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

(𝑒−𝜃 − 1)
 

𝑒𝑥𝑝 (−((− 𝑙𝑛(𝑢))𝜃

+ (− 𝑙𝑛(𝑣))𝜃)
1

𝜃) 

1

− ((1−𝑢)𝜃 + (1−𝑣)𝜃

− (1−𝑢)𝜃(1−𝑣)𝜃)
1

𝜃) 

 

 
 

𝜃𝜖(0, ∞) 

𝜃𝜖(0, ∞) 

𝜃𝜖[1, ∞) 

𝜃𝜖[1, ∞) 

 

Table I represents particular Archimedean copulas families 

(completely monotone) and the expressions of their 

corresponding generators, the families of Ali-Mikhail-Haq 

(AMH), Clayton (C), Frank (F), Gumbel-Hougaard (G) and 

Joe (J) (See also Hofert [26]).  

The parameter θ can vary only in (0, ∞). The latter is the 

range for which the Clayton and Frank generators are 

completely monotonous. Also note that for the Ali-Mikhail-

Haq family, Kendall's range of attainable tau is limited 

in [0, 1/3). 

 

 
Fig. 1. Archimedean generators listed in Table I. 

 

Measuring dependence between two random variables or 

more (also called a generalized correlation) often becomes 

necessary in most useful applications on copulas. These 

measures are cited as association measures and are generally 

studied in the bivariate case. Kendall's tau is one of those 

measures, for a vector (X, Y) is given by: 

 

τ = E[sing((X1 − X2)(Y1 − Y2))] 

 

τ = P[(X1 − X2)(Y1 − Y2) > 0] − 

 

P[(X1 − X2)(Y1 − Y2) < 0] 
 

where (X1, Y1) and (X2 , Y2) are independent identically 

distributed copies of the vector (X, Y) and called the signum 

function: 

 

sing(x) = 1(0,∞)(x) − 1(−∞,0)(x) 

 

In a different way, the Kendall’s tau is defined as the 

probability of concordance less the probability of discordance 

[16], it measures, as a number in [−1, 1].  
Therefore, by principle an Archimedean copula can 

typically be expressed in terms of their generators, i.e., 

generated by a twice continuously differentiable generator 

with: 

 

φ(t)  >  0, t ∈ [0, 1).  

 

Then, Kendall’s tau can be represented as: 

 

τ = 1 + 4 ∫
φ(t)

φ′(t)

1

0

dt ⇒ τ = 1 + 4 ∫
φ−1(t)

φ−1(t)′

1

0

dt 

 

For the proof see [14]. 

 
TABLE II: KENDALL’S TAU FOR THE ARCHIMEDEAN COPULAS 

Family Copulas  τ interval 

AMH 1 − (2(𝜃 + (1 − 𝜃)2 𝑙𝑛(1 − 𝜃)))/3𝜃2  −0.1817 ≤ 𝜏 <
1

3
 

C 

F 

G 

J 

θ/(θ + 2) 

1 + (4(𝐷1 (𝜃) − 1))/θ 

(θ − 1)/θ 

1 − 4 ∑
1

(𝑘(𝜃𝑘 + 2)(𝜃(𝑘 − 1) + 2))

∞

𝑘=1

 

 

0 ≤ 𝜏 < 1 

−1 ≤ 𝜏 < 1 

0 ≤ 𝜏 < 1 

0 ≤ 𝜏 < 1 

 

Table II represent the Kendall’s tau for each family given 

in Table I for Archimedean copulas.  

For example, for the Clayton family, τ =
θ

θ + 2
, then this 

family covers 0 ≤ τ <  1, where the quantity D1 is the Debye 

function of order one, defined by:  

 

D1(θ) =  ∫
t

exp(t) – 1

θ

0

dt

θ
, θ ∈ ]0, ∞[. 

 

III. RESULTS 

The estimation of copula parameters is the main focus of 

this section, even by way, over the first case, the estimation 

of the copula C is completely parametric, and it is assumed 

that the margins belong to a parameter-indexed family. 

Hence, in order to estimate their parameters, it is sufficient to 

estimate the margins. To hold this estimate, it is desirable to 

parameterize the copula function for statistical modeling 
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purposes, for a reason that data can be used to shed light on 

the extent of the association between the random variables.  

Assume that the copula C belongs to a continuous 

parametric family {Cθ: θ∈Θ}, where Θ the open subset of 

Rp for some integer p ≥ 1 represent the parameter space θ, 

denote the bivariate distribution association parameter 

(possibly a vector). Then the copula is assumed to be 

parameterized as Cθ (i.e., a copula that belongs to this 

family).  

This notation designates a family of copulas, where the 

margins F1and F2 are generally independent of θ.  
Even so, estimate Cθ amounts to estimating the vector of 

unknown parameters, generally carried out in two steps: 

• Step1: margins-based estimation. 

• Step 2: copula-based estimation to estimate its 

parameters. 

By using the maximum likelihood estimator (MLE) firstly 

then certain likelihood functions are to be maximized. 

Sometimes, this likelihood cannot be maximized. However, 

another strategy can propose on the margins called the 

Inference function method for margins (IFM), which 

overcame this problem. 

A. Maximum Likelihood Estimator (MLE) 

Let β be the vector of marginal parameters and 𝜃 be the 

vector of copula parameters. Given the relatively simple 

functional form the self-selection likelihood function under 

an Archimedean copula, MLE can be employed to jointly 

estimate all parameters of the unknown parameters vector 

(𝛽1, … , 𝛽𝑑, 𝜃) at the same time. Assume that we observe d-

independent realizations (Xi1, … , Xip), i = 1, … , d, specified 

by pmargins with (CDF) cumulative distribution function Fi. 

However, the density of 𝐹defined by the formula (1) is given 

by:  

 

f(x1, … , xd; θ)

= cθ(F1,β1
(x1), … . Fd,βd

(xd)); θ) ∏ fi,βi

d

i=1

(xi)(9) 

 

That is associated with a sample (Xi1 , … , Xip), where cθ is 

a density of a parametric copula  Cθ and fi,βi
is a density of 

Fi,βi
 . 

Both approaches presented seek to maximize a likelihood 

approximation based on (9). Consequently, the parameter 

vector to be estimated in the parametric approach is α =
(β, θ) and the function of loglikelihood is given by: 

 

l(𝛽1, … , 𝛽𝑑 , θ) = ∑ logcθ{F1,β1
(Xi1),

n

i=1

… , Fd,βd
(Xid); θ}

+ ∑ ∑ logfj,βj

n

i=1

d

j=1

(Xij) 

 

However, the MLE of θ will given by: 

 

θ̂ML = argmaxl(θ), where θ ∈ Θ. 

 

See, Lehmann and Casella [11] for more details. Under a 

specific copula model, the likelihood function is to be 

evaluated in R software by using “loglikCopula” and 

“loglikMvdc” packages. However, the “loglikis”most 

commonly used for a model fitted by maximum likelihood.  

To illustrate, let choose C as a bivariate Archimedean 

copula (dimensiond = 2), where the margins F1 and F2are 

distributed under Normal (N(μ, σ2)) and exponential 

(exp(λ)) distributions respectively. By the way, the 

representation of these multivariate distributions Fj (j =

1; 2 in our case) can be done by using the “mvdc()” 

packages.  

Since, the “fitMvdc” function is a wrapper for routine 

optimization in R, then to obtain the maximum likelihood 

estimator, a function “fitMvdc ()” was selected. 

The results obtained in TABLE II are established for the 

four most famous families of Archimedean copulas. From a 

sample of 1000 independent observations of such distribution 

with parameters margins: 

 

 𝛽1 = (μ = 0, σ2 = 1)and β
2

= λ = 1, 

 

where the copula parameter is chosen θ =  2.  

 
TABLE III: ARCHIMEDEAN COPULA PARAMETERS ESTIMATION VIA MLE 

Family μ̂ σ̂ λ̂ θ̂ 
Maximized 

log likelihood 

Clayton -0.0047 0.9752 1.0290 1.955 −1935 

Frank 

Gumbel 

Joe 

-0.0021 

-0.0556 

-0.0235 

0.9762 

1.0010 

1.0098 

0.9597 

1.0040 

09984 

1.778 

1.990 

2.030 

−2398 

−2040 

−2189 

 

A richer performance includes standard marginal and 

copula parameter errors estimates that can be acquired by 

asking summary. See the following table: 

 
TABLE IV: STANDARD ERRORS ESTIMATES PARAMETERS VIA MLE 

Family 
μ̂ Std. 

Error 
σ̂ Std. Error λ̂ Std. Error θ̂ Std. Error 

Clayton 0.026 0.016 0.032 0.09 

Frank 

Gumbel 

Joe 

0.030 

0.031 

0.032 

0.022 

1.019 

1.021 

0.03 

0.031 

0.031 

0.196 

0.059 

0.08 

 

In the parametric approach, through the use of a maximum 

likelihood estimator, the margins are estimated 

parametrically. Sometimes, this likelihood can be 

complicated and impossible to calculate, where the numerical 

optimization is available, and it might be too difficult. In 

these situations, another technique can propose to overcome 

this complication, generally called the IFM method which 

proceeds in two stages (the reader is invited to refer to the 

(IFM) method and the parametric MLE method). 

B. Margin Inference Function Method (IFM) 

This method was introduced by Xu [29] and Joe [16] in a 

general framework. He called the inference function method 

for margins (IFM) because estimation functions relate to 

likelihood score functions (univariate or multivariate). 

The IFM was used primarily for multivariate models in 

which a multi-parameter numerical optimization for 

maximum likelihood estimation is unattainable or takes a too 

long time if we talk about a time-consuming viewpoint. 

Therefore, the estimation by the IFM method can be 

decreased the computational load potentially associated with 
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the estimation of the maximum likelihood. Hence, this 

method proceeds in two stages: 

• Stage 1: Estimate the margins parameters firstly. 

• Stage 2: fix the marginal parameters obtained in the 

first stage, and then estimate the copula parameters. 

See Joe [28], [29]. By analogy, the unknown margins 

parameter vectors (𝛽1, … , 𝛽𝑑) are first estimated by: 

 

β
n,j

=  argsup (∑ logfj,βj

n

i=1

(Xij)) , whereβ
j

∈ Rpj 

 

For 𝑗 = 1, … , 𝑑. By the way in the second stage, estimating 

the vector of the unknown copula parameter θ is performed 

by: 

 

θ̂IFM = 

𝑎𝑟𝑔𝑠𝑢𝑝 (∑ logcθ (F1,β𝑛,1
(x1), … . Fd,β𝑛,d

(xd)); θ)

𝑛

𝑖=1

) , 

 

where θ ∈ Θ. The main advantage of this approach is that this 

method (IFM) is done in two stages. Wherever, under the 

MLE estimate, when models are usually multivariate, the 

number of parameters increases, and the numerical 

optimization becomes more complicated. Also, for some 

models, multi-dimensional numerical integration is needed, 

and this becomes increasing difficult, for the theoretical 

properties of the IFM method see [28]. 

To illustrate, we take into account the same setting used in 

the MLE estimation. The key R function is “fitCopula ()” 

with argument “method = "ml"”. 

 
TABLE V: ARCHIMEDEAN COPULA PARAMETERS ESTIMATION VIA IFM 

Family θ̂ Std. Error 

Maximized 

Log 

likelihood 

Clayton 1.956 0.086 425.8 

Frank 

Gumbel 

Joe 

1.779 

1.98 

2.021 

0.195 

0.051 

0.065 

41.77 

3600 

2334 

 

If the margins are carelessly specified, the estimate will be 

biased. Hence, despite the advantages of the IFM, we mention 

that this method does not prevent it from suffering the same 

disadvantage as an estimate of the maximum likelihood. The 

proof of this phenomenon was obtained in Fermanian and 

Scaillet [31] and Kim et al. [32]. 

In the semi-parametric approach, we do not assume that the 

margins (𝐹1, … . . , 𝐹𝑑) belong to any parametric family. Then, 

we estimate them directly by the nonparametric estimator 

given by (4). Therefore, we replace the margins by their 

estimate in (9), to estimate θ, and we maximize the part of the 

likelihood involving θ. For more details, see [7].  

The consistency of the estimator it is asymptotically 

normal under some conditions. However, despite these 

properties of convergence, it is not, in general efficient, 

except in the case of the bivariate Gaussian copula. See [6], 

[32]. 

 

IV. SEMI-PARAMETRIC ESTIMATION METHODS FOR COPULA 

In the previous section, we established parametric methods 

to estimate copula parameters, where the estimation 

constructed on the margins is completely parametric. In this 

section, we focus on non-parametric estimation of these 

margins by using a moment’s estimator, performed on 

coefficients of dependency (Kendall’s tau and Spearman’s 

rho), which leads us to pass automatically to a semi-

parametric approach. By the same way, the application is 

made on Archimedean copulas. 

A. Copula Estimation via Moment Estimator Based on 

Kendall’s Tau and Spearman’s Rho 

The estimation methods based on the correlation 

coefficients of Spearman's rho or Kendall's tau rank are called 

tau-inversion methods (respectively, rho-inversion) or 

concordance method (mentioned in part one), take advantage 

of the relationship between these coefficients of dependency 

and the parameter of the copula θ. Early references on the 

former in a copula setting are, among others, Oakes [15], 

Genest [23], Genest and Rivest [8]. 

We have seen the definition of the dependency coefficients 

given by formulas (2) and (3). However, for the pair (Xi, Xj) 

the empirical version of these coefficients is given by: 

 

τ̂i,j = (
n
2

)
−1

∑ sign(Xi
(p)

− Xi
(l)

)(Xj
(p)

− Xj
(l)

) 

 

ρ̂i,j =
∑ (Uî

(p)
− Uî

̅ )(Uĵ
(p)

− Uĵ
̅ )n

p=1

∑ (Uî
(p)

− Uî
̅ )2n

p=1 ∑ (Uĵ
(p)

− Uĵ
̅ )2n

p=1

1

2

 

 

where Uî
p

= F̂i(Xi
(p)

) and Uî
̅ = ∑

Uî
(p)

n

n
p=1 , i = 1, … , d and: 

 

{

sign(x) = 1

sign(x) = −1

sign(x) = 0 

|
x > 0
x < 0
x = 0

} 

 

 

Then, the estimators θ ̂obtained by tau-inversion methods 

(respectively, rho-inversion methods) are given respectively 

by: 

 

{
τ(θ̂) = τ̂i,jthen θ̂ = τ−1(τ̂i,j))

ρ(θ̂) = ρ̂i,jthenρ̂ = ρ−1(ρ̂i,j))
 

 

where τ−1 and ρ−1are the inverses of τ and ρ respectively, if 

they exist.  

In the bivariate case (d = 2) and when there is only one real 

parameter to estimate, the tau-inversion method applies to 

match the estimate under the model with its empirical 

estimate. Therefore, the estimator θ̂ satisfies: 

 

τ(θ̂) = τ̂1,2 , then θ̂ = τ−1(τ̂i,j) 

 

These two estimators are consistent and asymptotically 

unbiased. Noted that the inversion method of Kendall's tau or 

Spearman's rho is belonging to a semi-parametric approach, 
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since the expressions of their empirical version for margins 

𝐹1, … 𝐹𝑑 are implicitly estimated non-parametrically by (4).  

Therefore, if we suppose that C is the family of Gumbel 

copulas, then the estimator of θ by the tau-inversion method: 

 

τ(Cθ) = 1 −
1

θ
  and    θ̂ = τ−1(τ̂) =

1

1−τ̂
 

 

In R software, the name of the function corresponding to 

τ−1 is iTau().  

To illustrate, we suggest that the copula selected is 

belonging to a bivariate Archimedean family with a single 

parameter θ =  2, where the margins are distributed under a 

standard normal. To applied, let a 1000 independent 

observations the following table summarizes our application 

in R: 

 
TABLE VI: ESTIMATION OF ARCHIMEDEAN COPULA PARAMETERS VIA THE 

METHOD OF MOMENTS BASED ON KENDALL’S TAU 

Family τ theo value Std. Error θ estimate 

Clayton 0.5026 0.068 2.027 

Frank 

Gumbel 

Joe 

0.1909 

0.4939 

0.3551 

0.031 

0.065 

0.048 

1.7708 

1.9760 

2.000 

 

By the use of a standard error, we find the values 

corresponding across each copula indicated in the last 

columns of the previous table. By analogy using the same 

propositions as the previous one when the estimate is based 

on Spearman’s rho. The results of the application are 

summarized in Table VII: 

 
TABLE VII: ESTIMATION OF ARCHIMEDEAN COPULA PARAMETERS VIA 

THE METHOD OF MOMENTS BASED ON SPEARMAN’S RHO 

Family τ theo value Std. Error θ estimate 

Clayton 0.6840 0.019 2.0078 

Frank 

Gumbel 

0.2843 

0.6756 

0.030 

0.019 

1.7763 

1.9746 

 

The censored and uncensored samples (artificial data) for 

a type of non-Archimedean copula (bivariate Gaussian 

copula) are presented in the following figures.  

 

V. APPLICATION: MLE ESTIMATOR FOR CENSORED DATA  

A. Application for non-Archimedean Copula 

When the variables contain censored observations (either 

left, right, or interval censoring), the copula is illustrated also 

by a two-step parametric MLE approach: 

- Estimate the marginal parameters. 

- Set the marginal parameters to the estimated values 

in the first step, then estimate the copula parameters. 

A bivariate (non-Archimedean) copula fits the R code 

presented in the appendix to the data where one of the 

variables contains censored observations. However, all 

functions are required by the two parametric stages MLE 

estimation method to fit a copula. 

The packages copula, “MASS”, “survival”, “SPREDA” 

are needed by all the procedures in R, therefore we make them 

installed and loaded by the “install.packages(.)” and “library” 

functions respectively. 

The function for computing the log-likelihood in censoring 

is given by “loglikCensored”. To illustrate, we generate some 

artificial data using a non-Archimedean copula (bivariate 

Gaussian copula), for a censored observation that will 

subsequently be treated as right-censored cases. 

Assume that the first marginal is a normal distribution 

N(mean = 5, sd = 0.8), and the second marginal is a 

Weibull distribution with parameters (location=2.4 and 

scale=1.3). The censored and uncensored samples (artificial 

data) for a type of non-Archimedean copula (bivariate 

Gaussian copula) are presented in the following figure. 

 

 
Fig. 2. Censored and incensored artificial data for a bivariate 

Gaussian copula. 

 

We are now interested by illustrating a Gaussian copula 

based on the MLE parametric estimation method, also known 

as the functions of the margin method inference (MFI) in 

some situations. Where we adjust the marginal in the first 

stages, then, in stage two we fix the marginal parameters and 

estimate the parameter of the copula. 

In order to visualize the Gaussian copula log-likelihood 

functions, Fig. 3 shows the visualization of the logarithmic 

likelihood function used to estimate bivariate Gaussian 

copula parameters under right artificial censoring data. By the 

way, we include the MLE, confidence interval, and the true 

value for the copula parameter. 

 

 
Fig. 3. Fitting a bivariate Gaussian copula under right censoring data. 
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B. Application for an Archimedean Copula 

In this part of the paper, we are focused on an Archimedean 

copula family, where the data is arbitrarily censored by the 

same way using a bivariate Gumbel copula with parameter 3 

to generate artificial data. 

Assuming that the first marginal is distributed under 

normal distribution N(mean = 5, sd = 0.8), and the second 

marginal is distributed under a Weibull distribution with 

parameters (location=2.4 and scale=1.3).  

Then, the same procedure will apply to the rest of the 

programs we saw previously, see appendix. 

 

 
Fig. 4. Censored and incensored artificial data for a bivariate Gumbel 

copula. 

 

However, to visualize Gumbel’s copula log-likehood 

functions. Fig. 5 shows the visualization of a logarithmic 

likelihood function used to estimate bivariate Gumbel copula 

parameters under censoring observations (arbitrary 

censoring).  

By the way, we are including the MLE, confidence 

interval, and the true value for the copula parameter. 

 

 
Fig. 5. Fitting a bivariate Gumbel’s copula under arbitrary censoring. 

 

When we use the two-stages of the IFM estimation method, 

the standard error for the copula parameter is normally 

underappreciated (i.e., too small). The reason for this 

underappreciated is that the marginal IFM was set during the 

second step of the adjustment process. Therefore, when 

estimating the copula parameter at this second stage, it does 

not consider the margins. 

 

VI. CONCLUSION 

Two approaches are generally used for estimating copulas, 

the parametric and semi-parametric one. In the first case, the 

resulting estimate of C will be completely parametric, we 

assume that the marginal belongs to a parameter-indexed 

family, so it is sufficient to estimate their parameter in order 

to estimate the margins parametrically. Even, if it will be a 

semi-parametric approach, we dont assuming that the 

margins belong to any family, so the margins will be 

estimated non-parametrically. 

In this paper, we are interested by the two approaches, 

where two estimators for this approach are proposed. The 

maximum-likelihood is called also the MLE method and the 

inference function method for margins (IFM) which 

simplifies the estimation procedure when it is impracticable 

by the MLE method.  

Even so, for a semi-parametric approach, the method of 

moments based on Kendall’s tau and Spearman’s rho is 

presented. An extension of the copula moment method, 

regarded as a generalization of the tau-inverse method, has 

been presented in a generalized context. 

As an application of the MLE estimator, two classes of 

Archimedean and non-Archimedean copulas were 

introduced. The first class was chosen because of its number 

of interesting properties and the efficiency of its results. In 

addition, the second class was chosen to be compared with 

the first.  

Hence the purpose of this paper is to present a particular 

class of copulas (Archimedean), their uses, and their 

approach in statistics. However, their illustration in the R 

language-focused mainly on the semi-parametric approach, it 

was discussed in part five of the paper under censored data to 

introduce the log-likelihood function and the estimation of a 

copula using two stages consecrated for this method. 

One of the perspectives is the modeling of this class of 

copula-based on the CM’s estimator in the case of censored 

data. 

 

APPENDIX 

As an illustration in R software, the key function for the 

maximum likelihood: 

• The illustration of the maximum likelihood 

estimator to illustrate the Gumbel copula needs at 

first to assert the function gumbelCopula() with the 

real value of parameter. 

• To illustrate the margins as 𝑁(𝜇 = 0, 𝜎2 =
1)) and 𝑒𝑥𝑝(𝜆 = 1)), it is enough to assert the 

mvdc() function. 

• To maximize a loglikelihood function you need to 

use the fitMvdc() for illustration. 

The key function for the moment estimator Based on 

Kendall’s Tau and Spearman’s Rho: 

• The illustration of the moment estimator Based on 

Kendall’s Tau and Spearman’s Rho needs the same 

procedure given above for margins, except that the 

function used to the corresponding copula parameter 

estimate is iTau() and iRho() respectively.  

• However, the standard error is returned by the 

function summary(). 
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Application on non-Archimedean copula under censoring   

data: 

• For a censored and incensored artificial data using a 

bivariate Gaussian copula, we generate the margins 

distribution by mvdc(copula=…, c("norm", 

"myWeibull"), list(list(mean=…, sd=…), 

list(location=…, scale=…))). Where the first 

marginal is a normal distribution, and the second 

marginal is a Weibull distribution. 

• To visualize the copula: we draw sample, inspect the 

generated data and we apply random censoring to 

the observations by select rmyWeibull() function, 

then ifelse(xy[,2]> censored, 0, 1) where xy[,2] <- 

pmin(xy[,2], censored). Hence, the censored 

observations will subsequently be treated as right 

censored cases. 

• To plot the censored data we assert the plot() 

function, as well as, we choose the legend and the 

col. 

To fit a bivariate Gaussian copula to the artificial data by 

means of the two-stage estimation method. 

 

• Stage 1: fit the marginal’s, and obtain the marginal 

parameters by: 

(normMLE<- fitdistr()) 

normMean1 <- normMLE$estimate 

normSD1 <- normMLE$estimate 

(weibullMLE<- survreg()) 

weibullLocation2 <- coef(weibullMLE) 

weibullScale2 <- weibullMLE$scale 

Compute the cumulative probabilities for the 

marginal’s bycbind(pnorm(), 

pmyWeibull()) function. 

 

• Stage 2: fix the parameters of the marginal’s and 

estimate the copula parameter by: 

 

Starting value for the copula parameter:  

tauEst<- sin(cor(…, …,  method="kendall")*pi/2)). 

fitGaussian<- optim(tauEst, loglikCensored, 

method="BFGS", copula=…,) 

Apply MLE for the copula parameter using 

fitGaussian$par function. 

 

• To visualize the logarithmic likelihood function 

used to estimate the parameter of the copula, we 

need to select the Kendall’s tau value taus<- seq(-1, 

0, length.out=100).  

• By the way, when data is censored the R key for 

copula is loglikCensored(), liks<- sapply(taus, 

function() loglikCensored(param=.., copula=..,). 

Then we call the function plot(taus, liks, type=.., 

xlab="…", ylab="…"). 

• To include the MLE for the copula parameter we 

declareabline(v=fitGaussian$par) function. 

• To include the confidence interval for the copula 

parameter we declare abline(v=ci) function. 

• To include the true value for the copula parameter 

we assert abline(v=myCop@parameters) function. 

• To add a legend we assert legend() function. 

Application for an Archimedean copula under censoring: 

By the same way, using in non-Archimedean copula we 

just need to change the Gaussian copula by the corresponding 

Archimedean copula. 
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