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ABSTRACT

This paper presents several classical and modern proofs demonstrating
the infinitude of prime numbers. The discussion includes Euclid’s original
argument as well as alternative approaches including analytic, topological,
and combinatorial proofs. In addition, this paper discusses two open
problems in number theory: the infinitude of Mersenne primes and the Twin
Prime Conjecture. The aim is to provide an overview of both established
results and ongoing challenges in the study of prime numbers.
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1. Introduction

Prime numbers play a central role in number theory and mathematics as a whole. Their distribution
and properties have been studied extensively, yet many fundamental questions remain open. One of
the most well-known results in this area is the infinitude of primes, first proven by Euclid. Since then,
numerous alternative proofs have been developed, each offering distinct mathematical insights.

This paper collects and presents a variety of such proofs, ranging from classical number-theoretic
arguments to analytic, combinatorial, and topological methods. The objective is not only to illustrate
the robustness of the result but also to highlight the diversity of tools used across different branches of
mathematics. The final section addresses two unsolved problems concerning special classes of primes–
Mersenne and twin primes–and summarises current progress and conjectures related to them.

2. Proofs of the Infinitude of Primes

2.1. Euclid’s Proof

The oldest proof of the infinitude of prime numbers was provided by Euclid. This proof relies on
the Fundamental Theorem of Arithmetic (FTA), which states that any integer greater than 1 can be
written uniquely as a product of prime numbers up to the order. First, suppose there are n (finitely
many) prime numbers p1, p2, p3, . . . , pn. This means that all positive integers greater than 1 must be
a multiple of at least one these prime numbers. However, we can consider a positive integer q such that

q =
(

n∏
i=1

pi

)
+ 1 ≡ 1 (mod pi), ∀ i ∈ {1, 2, . . . , n} (1)

Note that q is a positive integer greater than 1 but not a multiple of any of the prime factors. This is
a contradiction, and therefore there are infinitely many primes. �

2.2. Proof Using Fermat Numbers

Fermat numbers are defined by the following sequence

Fn = 22n + 1, n ≥ 0 (2)
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We first show that Fermat numbers are pairwise coprime. To do so, consider two distinct Fermat
numbers Fa and Fb, WLOG set a < b.

Fa = 22a + 1 (3)

Fb = 22b + 1 = (22a
)2b−a + 1 (4)

Now let c|Fa, where c is an integer greater than 1. We have that

Fa ≡ 0 (mod c)
⇒ 22a ≡ −1 (mod c)

⇒ Fb = (
22a)2b−a + 1

≡ (−1)2b−a + 1
≡ 1 + 1
≡ 2 (mod c)

(5)

Note that Fb ≡ 0 (mod c) iff c = 2, which is impossible as 2 � Fn. Thus, we have shown that Fermat
numbers are pairwise coprime. It follows that each Fermat number has at least one unique prime factor,
but since there are infinitely many Fermat numbers, this means there are also infinitely many prime
numbers. �

2.3. Analytic Proof Using Euler Product

In general, for any Dirichlet series with bounded and multiplicative a(n), and Re(s) > 0

∞∑
n=1

a(n)

ns
=

∏
p∈P

P(p, s) (6)

However, prior to this, in the specific case that s = 1 and a(n) is totally multiplicative, Euler proved
the following (Euler’s Product Formula), formally

∞∑
n=1

1
n

=
∏
p∈P

( ∞∑
i=0

1
pi

)
=

∏
p∈P

p
p − 1

(7)

Assume, for contradiction, that there are finitely many primes. This implies that the product is also
finite, and hence the harmonic series converges. This is clearly false, which leads to a contradiction.
Therefore, there must be infinitely many primes. �

2.4. Furstenberg’s Topological Proof

Furstenberg introduced a topological proof for the infinitude of primes [1]. We define a topology on
the integers Z, where a subset S ⊆ Z is open if:

• it is empty, or
• for every element a ∈ S, there is an arithmetic progression A(a, b) = {a + bn | n ∈ Z} ⊆ S.

Note that A is open by definition. It is also closed as it can be written as the complement of a union
of open sets

A(a, b) = Z \
b−1⋃
i=1

A(a + i, b). (8)

Now define:

B =
⋃
p∈P

A(0, p) (9)

We know B is both open and closed, but we also know B = Z \ {−1, 1}. If there are finitely many
prime numbers, B is closed and so {−1, 1} is open, which is not possible as it is finite. Therefore, this is
a contradiction and there must be infinitely many prime numbers. �
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2.5. Proof Using Pigeonhole Principle
We start by assuming there are n (finitely many) primes p1, p2, p3, ... , pn. This proof utilises the

fact that

∀n ∈ Z+, ∃α ∈ Z+ such that 2α > (α + 1)n

Choose an α satisfying this and define the following mapping:

f : {1, 2, 3, . . . , 2α} → {0, . . . , α}n

f (x) := (k1, . . . , kn)

where

x =
n∏

i=1

pki
i (10)

This function is well-defined due to the unique prime factorisation of integers. Due to our original
choice of α, we have that:

|{1, 2, 3, . . . , 2α}| >
∣∣{0, . . . , α}n

∣∣ (11)

Hence, by the Pigeonhole Principle, we know

∃ x1, x2 ∈ {1, 2, 3, . . . , 2α}, x1 �= x2 such that f (x1) = f (x2)

This contradicts the FTA as it implies that there are two distinct integers with the same prime
factorisation, so there must be infinitely many prime numbers. �

2.6. Proofs Using van der Waerden’s Theorem
Another result we can use is van der Waerden’s Theorem, which is a theorem in Ramsey Theory.

Formally, it states that for any r, ∃N(l, m, r) so that for any function C : [1, N(l, m, r)] →
[1, r], ∃ a, d1, . . . , dm ∈ Z+ such that C(a + ∑m

i=1 xidi) is constant on each l-equivalence class of
[1, l]m [2]. If we look at C as a form of colouring, this theorem tells us that there are arbitrarily many
arithmetic progressions containing integers assigned the same colour.

A proof was suggested by Alpoge [3]. Suppose there are exactly n primes, p1, p2, p3, . . . , pn in
increasing order. We define a function f : Z+ → {0, 1}P × {0, 1}P by

f (x) = (
δp(x), vp(x) mod 2

)
p∈P (12)

where

δp(x) =
{

1 if p | x,
0 if p � x,

(13)

and vp(k) is the exponent of p in the prime factorisation of n.
There are a finite number of colours and we can apply van der Waerden’s Theorem, so we can find a

monochromatic arithmetic progression a, a+d, . . . , a+kd, where k > p2
n. Note that p | a �⇒ p | d,

and we can show that vp(a) < vp(d) for all p using a parity argument. This implies that vp(a) = vp(a+d)

for all p, meaning that a and a + d have the same prime factorisation, contradicting FTA. �
Alternatively, using a similar idea, we could have defined the function g(x) = ∏

p∈P p(vp(x) mod 2). We
assign the same colour to x and g(x). We know | Im(g)| = 2n and for some R ∈ Im(g) there exists
a monochromatic arithmetic progression a, a + d, . . . , a + kd, with the same colour as R, with at

least four terms. It follows that
a
R

,
a + d

R
,

a + 2d
R

,
a + 3d

R
is an arithmetic progression of four square

numbers, which has been proven impossible to exist by Fermat. This is once again a contradiction. �

3. Unsolved Problems

3.1. Infinitude of Mersenne Primes
Mersenne primes are prime numbers of the form 2p − 1, where p is itself a prime. It is clear that if

p is not prime, then 2p − 1 is composite. This is because if p = mn with m, n > 1, then we can factor
2mn − 1:

2mn − 1 = (2m − 1)(2m(n−1) + 2m(n−2) + · · · + 1),
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showing that 2p−1 will have non-trivial divisors. However, this condition is necessary but not sufficient,
as a simple counter-example is 211 − 1 = 2047 = 23 × 89.

The Euclid-Euler theorem states that there is a bijection between Mersenne primes and even perfect
numbers (even numbers equal to the sum of their proper divisors). Firstly, Euclid proved injectivity by
showing that there exists a corresponding even perfect number 2p−1(2p − 1) for every Mersenne prime
2p − 1. Afterwards, Euler proved surjectivity by showing that every even perfect number must be of
this form, and hence must correspond to a Mersenne prime.

The Lucas-Lehmer test [4], [5] is used to find the prime numbers p such that 2p −1 is also prime. The
first few values of p satisfying this are:

2, 3, 5, 7, 13, 17, 19, 31, . . .

Despite many discoveries of large Mersenne primes (the largest so far has been 2136279841 − 1) [6], it
remains an open problem whether there are infinitely many such primes.

There has been substantial research on the distribution of Mersenne primes. For instance, Gillies [7]
conjectured that the number of Mersenne primes less than or equal to x, denoted M(x), satisfies:

M(x) ∼ c log x (14)

for some constant c. Later, Lenstra, Pomerance [8], and Wagstaff [9] conjectured that:

M(x) ∼ eγ log2(log2 x) (15)

where γ is the Euler–Mascheroni constant.

3.2. Twin Prime Conjecture
A twin prime is a prime that differs from another prime by exactly 2. Twin primes are normally given

in pairs (p, p + 2), where both p and p + 2 are prime. The first few twin prime pairs are as follows:

(3, 5), (5, 7), (11, 13), (17, 19), . . .

Just like Mersenne primes, it is conjectured that there are infinitely many twin primes, that is

lim inf
n→∞ (pn+1 − pn) = 2 (16)

where pn is the n-th prime, but this has yet to be proven.
Hardy and Littlewood [10] studied the distribution of primes, and a specific case of their first

conjecture states that

π2(n) ∼ 2C2

∫ n

2

dt
(log t)2

(17)

where π2(n) denotes the number of twin primes less than n and

C2 =
∏
q ∈P
q≥3

(
1 − 1

(q − 1)2

)
≈ 0.6601618 . . . (18)

is the twin prime constant.
Goldston, Pintz, and Yildirim [11] found that

lim inf
n→∞

pn+1 − pn√
log pn (log log pn)2

< ∞ (19)

which was the best result until Zhang [12] showed that

lim inf
n→∞ (pn+1 − pn) < 7 × 107 (20)

Maynard [13] improved this bound even more to

lim inf
n→∞ (pn+1 − pn) ≤ 600 (21)

In fact, he also showed that if the Elliott-Halberstam conjecture [14] was proven true, the bound will
reduce greatly to

lim inf
n→∞ (pn+1 − pn) ≤ 12 (22)

which could be a great step towards solving the conjecture.
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4. Conclusion

The infinitude of primes is a foundational result with many beautiful and varied proofs. Understand-
ing these proofs not only solidifies fundamental mathematical knowledge but also provides tools and
inspiration for addressing deeper conjectures in prime number theory. By analysing and developing
these methods, we may come closer to resolving open problems that have stood for centuries.
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