European Journal of Mathematics and Statistics
Vol 6 | Issue 2 | April 2025
ISSN 2736-5484

RESEARCH ARTICLE

CrossMark

New Algorithms to Compute Hypersingular
Integrals with Rapidly Oscillating Kernels

Maria Rosaria Capobianco®"* and Giuliana Criscuolo®’

ABSTRACT

The paper is dedicated to the study of two new algorithms for approximating Submitted: February 06, 2025
hypersingular integrals with rapidly oscillating kernels. The methods use Published: April 29, 2025

an interpolatory procedure at zeros of orthogonal polynomials. Estimates

of the error are given, as well as of the amplification factors. Some d
numerical examples show the coherence of the theoretical results with the
numerical ones.

10.24018/ejmath.2025.6.2.393

!CNR Institute for Applied Mathematics
“Mauro Picone” (1AC), Italy.

Keywords: Error bound, finite-part integral, oscillatory integral, stability. 2 Department of Mathematics and Applica-
tions “Renato Caccioppoli,” University of
Naples Federico 11, Italy.

* Corresponding Author:
e-mail: mariarosaria.capobianco@ecnr.it

1. INTRODUCTION

In [1] the authors propose an approximate method for evaluating Cauchy singular integral with
rapidly oscillating kernel

1
I“’(f;t)::/l%eiwxdx, w>0, —-1<t<l, (1)

and compare this method with some other numerical approximations available in previous literature.
The present paper is devoted to the issue of construction of two new algorithms for evaluating the
finite-part hypersingular integral

1
J“’(f;t)::/l (){Ext))z ddx, w>0, —1l<t<l, )

taking into account the results in [1].

The mathematical modeling of wave processes, electromagnetic scattering and fracture mechanics
in many areas of physics and technology bring importance into the evaluation of singular and
hypersingular integrals with rapidly oscillating kernel (cf. [2]-[5]), and in the last years many papers
are devoted to numerical methods for approximating the integrals in (2) (see for example [6]-{8] and
the references given therein). Here, we follow the idea presented first in [1] and in [9], where quadrature
formulas are considered based on interpolation processes that are convergent, stable and can be
implemented with small attempt.

Defined the integral (1) as Cauchy principal value

I° (f; 1) = lim (/ /)f(x) dx, >0 —l<t<lI,
e— 0t t+e

the integral (2) can be written as the derivative of (1)

d
J‘“(f;t):al‘”(f;t), w>0 -1<t<l,
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see ([10]). Moreover, from Lemma 6.1, Ch. IT in [1 1], we can write

i Fee) ey erh _

JOf 0 =
7:0 xX—1 1—1t 1+1¢

/ S () e"”‘d 4 / D)) 6"“ _ef () e™f (=D

9 0, _1 t 1 3
x—1 1—¢ 1+¢ ®= =f= )

Recalling that ¢’ = cos wx + isinwx, finally we obtain

1 / :
o = / cos wx (17 (x) + inf (x)) et

1 X —1

0, —1l<t<l. 4
x—t 1—1¢ 1+t @="5 =t= @)

/1 sin wx (f7 (x) + iof (X)) i eef () e f (=1)
-1

At first, we remember that if the functions f and f’ are Holder continuous then, we obtain the
existence of the integrals (1)—(3) (see [10]).

Very recently, in [9] the authors have presented a method for evaluating integral in (3) making
use of the values of f and f* at the first kind Chebyshev zeros, proving bounds of the error and of
the amplification factor. Although the deduced formula has the drawback of using twice as many
functional evaluations, it has the advantage of having recourse only to the weights of the quadrature
sum proposed in [1] to approximate (1).

In the present paper we give two new algorithms to compute (3) which although use new weights,
have the advantage of making use only of the values of the function f at the same points, and are
convergent in a weaker condition on the smoothness of the density function f. Therefore, these latter
formulas are useful, for instance, in quadrature method for solving hypersingular integral equations
with rapidly oscillating kernel.

The paper is organized as follows: In Section 2 as well as presenting the algorithm, bounds of the
error and of the amplification factor are provided; in Section 3 we present an alternative approximative
method having the advantages of that ones in Section 2 about the computation and having a better
convergence behavior. Finally, in Section 4 we present some numerical examples that show the
coherence of the theoretical results with the numerical ones.

2. AN ALGORITHM TO EVALUATE INTEGRAL (3)

From (4) we observe that the numerical approximation of (3) is strictly related to the quadrature of
the following integrals:

Ig (f / A smwxdx 12 (f / AL coswxdx ®)

and I¢ (f;1), I¢ (f; 1) that can be approximated by using the methods in [I]. In [9] the authors have
suggested the use of

1 (an/)

1 X —

18, (¥ f51) = / sin wxdx
to approximate 1§ (f'; 7).

Here, in order to establish a formula that does not depend on the samples of the derivative function
J', we approximate f” in (5) with the Lagrange interpolant polynomial L), of the function f instead of
the Lagrange interpolant polynomial £,, of the function f”. In what follow we will consider quadrature
formulas of I3 (f';¢), since the integral I (f”; r) can be treated similarly. In particular, we consider the
following approximation

1 E/ ap. £.
I;im (VOC,B;]('/; l) = / M Sin (L)xdx, (6)

1 X —1

where the Lagrange polynomial £, (v“’ﬁ; g) interpolates a given function g at the points x‘:;ﬁk, k =
1,...,mzeros of the mth Jacobi polynomial pfﬁ;ﬁ, m € N with respect to the exponent o, p > —1.

First, let us introduce some notations.
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Let us denote by w, (f;8) the modulus of smoothness of a given function g, defined as

0y = Sup;,; I|£I|‘BI( ’Ahwg (x)

where ¢ (x) = +/1 —x? and Npeg (x) = g(x+h/2¢ (x)) — g(x — h/2¢ (x)), (cf. [12]). Further, we
denote by ||gll, = maxy<i|g (x)| the usual uniform norm and by Af‘,,’ﬁ, m € N the mth Lebesgue
constant corresponding to the weight function v (x) = (1 — x)* (1 + P, B =1, x <1.

We shall study the convergence of the sequence Ig,, (v='/>712, f";1) = Ig,, (f';1) in (6) witha = B =

—1/2to I¢ (f';t). For this purpose, we state a theorem showing the behavior of the function Ig (f7; 7).
Theorem 1 Let f € C' and w > 0. Then for |t| < 1,

{<1+w>v’|w+/1 Mds],

0 d

|15 (/5 1)| < clog 1—2

where ¢ denotes a positive constant independent of t, f and w. O

Proof. See Theorem 3.1 in [1].

We recall the next result on the simultaneous polynomial approximation of a given function g (see
[13], Theorem p. 113).

Lemma 2 For every function g € C¥, there exists an algebraic polynomial q,, of degree m > 4k + 5

such that
k—i
. . V1 =2 V1 —x?
\g<’><x>—qf,?(x>|sc(—x) w(f“‘);—x), i=0.1....k
m

m

where |x| < 1 and c is a positive constant independent of m, g and x.

In the previous lemma and in what follows w (g; .) denotes the ordinary modulus of continuity of a
given function g.

Then, for the quadrature rule (6) with « = § = —1/2, the next result holds true.

Theorem 3 For every function f € CX, k > 0 and w > 0, we have

e

|Is“),m (f/;t)i <clog mzlogm(2+w+logm) Il » (7)

R

and

(k). L 1 .8
|12 (5 1) = 13, (/3 7)| < clog ¢ 5 i‘”(fk’zm) log m (2 4+ o + log m)+/ Md(g]’ (8)
’ 1 —1¢ m 0 5

where ¢ denotes a positive constant independent of m,f,w and t € (—1,1).
Proof. In view of Theorem 1 we can write

15, (51|

EC]Og1 etz 1+ w) Hﬁ/m(f)Hoo-l-/ol/deg_,_/lldeé

: Lo .
< clogﬁ [(1 + w+logm) | £, (O], + Py <5 (f)”oo]
e

fclogl_t2

2+ o + logm) Hﬁ/m (}")HOo

e
< clog 7——m* 2+ +logm) [ Lm (Nl »

by using Bernstein inequality. Hence (7) follows from || £y, (f) |l = O (logm) when o = = —1/2.
In order to prove (8) we remark that in view of Theorem 1

1 (1) = 13, (1) =

13 (f' = L (:1))

1w, (f’ - E;n;(S)

< ¢log (1 + ) f’—./:;n(f)“oo+/0 —————ds . ©)

e
-
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Now let ¢,,—1 be the polynomial of Lemma 2. Thus

YT I
o0 o0 o0

1 1 1 1 /
(k—1). - k). —
SC[mk—lm(f ’m)+mkw(f ’m) Lm”oo]

1 1
<c— w(f(k);—) logm. (10)
m

P
Further
/1 Wy (f’ - E/m;«S) s
0

1)
<[ Md8+f1 Md‘“rfomwdwr

m m

11 W (‘C;n (qul —f);é)

: ds

1
m o,
<ol [F Y el =4 Ve -l

+ logm | L}y, (qm1 =] o}

1 /.
S C[/m w“’(f’g)d8+ lofnfw(f(k);l)
0 1) mr— m

(14 Togm) Wl -1 = | (1n
1
i ) I 1
5(:[/ wq,(f )d8+ Olgz(l—i—logm)w(f(k) )],
0 1) m
having used again Bernstein inequality, Lemma 2 and ||£y, (f)ll = O (logm) fora = p = —1/2.

Combining (10) and (11) with (9) we deduce (8). O
We want to emphasize that from (7) we can deduce the following bound

< cm*logm (2 + w + logm) ,

18, (/) log™!

e
1—(.)?

that provides the behavior of the weighted amplification factor.
We go on to see how to compute /g, (f’; z) in (6) with a = B = —1/2. So we denote by

-1 1 _1_1 2
Dy Z(X)ZPO(X):ﬁstZ Z(X)=Pm(x)= ;Tm(x),mz 1

o=

1/2 172

the m-th Chebyshev orthonormal polynomial of the first kind and let x, = Xpik =
cos ((2k — 1) = /2m) be the zeros of the orthogonal polynomial 73,. Since
, 1 , m ,
Lo (3 ES5x) = L (1330 = DL, O ()
k=1
where £k, k = 1,...,m are the fundamental Lagrange polynomials with respect to the points
Xmk,» kK =1,...,m, we have
) m 1 Em k( ) ]
1, () =3 | [ 2 o | £ ().
k=1 L7707
with
m—1 d
Lo () = Z;a%pioo, k=1,....m,
and
1
m (X) (x) T .
ai:/—l% Z[mk xm,/)pl (xmz/) pi (xm,k)a i=1...,m—1L

j=1
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Thus,
m—1
bx =22 Tl T, k=,
and
b m m—1
Ig‘gm . ; = E ; |:Zl Ti (xm,k) %w (t):|f(xm,k)s (12)
= i=
where

, b
qi‘“(t)z/ th)sina)xdx, i=1,2,....
-1

Denoting by {U,},cn the sequence of the Chebyshev orthogonal polynomials of the second kind, we
have

TI;(X)ZI’I[],1_1(X), nzlsza"‘s

and
Ux) =1, Ui(x)=2x, Ui (x) =2xU, (x) = Up-1 (x), n=12,....
Therefore
g0 ) =igl, (0, i=12...,
where
1
U; .
g7, (1) = / i) sinwxdx, i=0,1,....,
1 x—t

Gy (O = 21, (1) — G, 1(z)+2Mn, n=12,..., (13)

and
—_w l
M, =/ U,(x)sinwxdx, n=0,1,....
-1
The accurate evaluation of M: in (13) allows us to compute g, (¢) forn =0, 1,..., together with
1
sin wx
qp (1) = / P dx =sinwx [Ci(1]) — Ci(J12]) ] + coswx [Si (71) + Si(|2]) ],
-1
and
1
0 X sin wx Y
g7 (1) = 2/ dx = 2tq; (1),
-1 X—
where
T
-1
Si (1) :/ wdx Ci(1) :/ %dx+logt+ C, >0,

0o X 0 X
are the sine and cosine integral, respectively, 71 = w(l—1,n = —w(l+1) and C is the Euler
constant. The starting values of (13) require the evaluation of the sine and cosine integrals that can be

computed by some mathematical software like Mathematica [14]. Finally, we remark that (12) can be
rewritten

13, (f'; Z emi(NG? (1), (14)

with respect to the coefficients

Cm,i (f) = Z i+1D Ty (xm.k)f (xm,k) , 1=0,2,...,m—=2,

k=1
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which are not influenced by the value t and the oscillatory factor . Thus the evaluation of Ig,, (f"; t)
n (14) can be done following Clenshaw type algorithm of this kind:

Zm = Zm—1 :Oa Win—1 :0’
zk =2z — Zkp2r F ek (), k=m—2,m—-3,...,0

wk:2zk+lﬁz)+wk+1, k=m-2,m-3,...,0

2 -
I, (1'51) = — (@5 (0 20 + wo)

We want point out that even if the quadrature I, (f ’; t) is to preferred to use formula (6) in [9],

because it does not use the values f” (xm,k) ,k=1,...,m, from a convergence point of view it performs
worse (cf. the previous theorem and Theorem 1 in [9]). This is due to the fact that I3, (f ’; t) uses the

operator E;n which performs worse that the operator £,, used in [9]. Indeed, the Lagrange operator is
not good for the simultaneous approximation even if we start from an optimal choice of interpolation
points as in the case o = = —1/2.

3. ANOTHER ALGORITHM TO EVALUATE INTEGRAL (3)

In the sequel we shall propose a new formula to compute /¢ (f'; 7) having the advantages of I, (f'; )
about the computation and having the same convergence behavior of formula (2.6) in [1].

We introduce the polynomial £,,; (g) interpolating a given function g at the points X,k =
1,...,m,zeros of T, and at x,,,0 = —1, X my1 = 1

L (gx) = (1-x%) m( ()2,x)+[( D"l =x) gD+ 1+xg]

Then we consider the new quadrature rule

Ig)mll(f )= (mll(f) )

to approximate /¢ (f ; t). For it we can prove the following result.
Theorem 4. For every function f € C*,k > 0 and w > 0, we have

Tn(x)
3

8,11 (1'31)] < clog——logm 2+ o + logm) | | (15)

and

k). 1 L .8
119 (f730) = 18,0, (3 1)] < clog1 _e 7 [ (fk : )logm(2+w+logm) +/ %d(?], (16)

where c denotes a positive constant independent of m,f,w and t € (—1,1).

Proof. To prove (15) and (16) we can follow the same steps to prove (7) and (8), respectively. Thus,
the proof follows recalling that H ‘C/m,l,l H = O (log m) in view of Corollary 3.2 in [15].

We remark that the assumption of the existence of the Holder continuous derivative f” besides
ensuring the existence of ¢ (f'; 7) it provides the convergence of 1§, | | (f'; ) (cf. Theorem 4). Instead,
the same hypothesis on the smoothness on f does not ensure the convergence of Ig, (f51) (cf.
Theorem 3).

Finally, by standard computations we try

m—1

2 (151 = —Z ST () [ <2 (17 0+ MP) + (1= 2) g, (0 = jeM).

k=1 | j=2
5w w 6 0]
—j (Mj - M; )] tqs () + Xmk [a)cosa) — sinw] — 2tq7 (1)

ik -1 m+1 S _
+(1_z2)ag<z>]}{(_x 8¢ {0+ [~ a - 0g, 1))

m,k
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S0+ fan o+ m Mo+ a0z, 0]} o,

where g, (#) and V:, n=20,1,2... are the same defined before and where

1
T, .
42 (0 =/ n () sinwxdx, n=0,1,...,
1 x—1t

1
M,’;’:/ T, (x)sinwxdx, n=0,1,....
-1

Recalling that the polynomials 7}, n € N, satisfy
Tox)=1, ThW(x)=x, Ty x)=2xT,(x)—T,-1 (x), n=12,...,
we try
qoo (1) =202 (1) — g () +2MP, n=12,.... (17)

The evaluation of the integral M¢ in (17) allows us to compute g2 (f) for n = 1,2, .. ., together with
q¢ (1) =14 (Hand g7 (1) = 1/2¢7 (D).

4. NUMERICAL EXAMPLES

In this Section we consider two numerical examples with the aim of showing the correspondence
between the numerical results and the theoretical ones by applying the algorithms presented in the
previous Sections. All the computations have been performed in double precision arithmetic.

In the first test we choose the function f (x) = exp (x), so that f"(x) = exp(x). In this case we
know the exact solution, therefore we compare this with the numerical solutions obtained using the
two proposed methods. We denote by

Eg‘),m (f/; t) = I.(S{) (f/; t) - I.(S{),m (f/; t) and Ef;,m,l,l (f/; t) = Igj (f/; t) B Ig‘),m,l,l (f,; t) >

the errors obtained with two different methods. In Tables I-III we show the errors of the two
methods, compared with the exact solution of the integral evaluated with Mathematica package, for
three different values of r € (—1, 1), w and for increasing values of m € N.

In the second example we choose the function f (x) = 1/2 (xvl — x2 + arcsin x), so that f” (x) =

+/1 — x2. In such case we don’t know the exact solution, and in Tables IV-VI we consider only the
correct digits obtained using the two proposed methods and, as in the first example, for three different
values of 1 € (—1,1), o and for increasing values of m € N. Taking into account the regularity of
the functions considered in the examples, Theorems (3) and (4) give the same order of convergence, as
we can see looking at the results presented in Tables [-I11. Better results are obtained with the second
method when the function is less regular.

TABLEL f(x)=exp(x),0 =10

m E¢ (f;0.1)  E¢ ., (f0.1) E¢ (f;0.5)  E2,.,,(f0.5) E¢n (f';0.9) ES i1 (f;0.9)
4 0.1D-01 0.4D-03 0.1D-01 0.3D-03 0.9D-01 0.1D-02
8 0.2D-05 0.2D-07 0.5D-06 0.1D-07 0.6D-05 0.5D-07
> 16 0.1D-14 0.5D-15 0.2D-14 0.3D-15 0.1D-10 0.9D-14

TABLEIL: f(x) =exp(x),o =50

Een(:00) Ego (200) B3, ((:05) By, ((:05) By, (1:09) By, (1:09)
4 0.8D-02 0.2D-03 0.8D-01 0.2D-02 0.8D-01 0.8D-03
8 0.1D-05 0.1D-07 0.5D-05 0.5D-07 0.6D-05 0.9D-09
> 16 0.1D-14 0.3D-15 0.2D-14 0.2D-15 0.3D-14 0.8D-15
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TABLE IIL: f(x) = exp (x),» = 100

Eg (F;01) Ee . (F:01) Eg _(7;05) Eg_,(f;05) E2 _(7:09) E2_  (f;09)
4 0.2D-01 0.7D-03 0.8D-01 0.2D-02 0.9D-01 0.6D-03
8 0.3D-05 0.3D-07 0.5D-05 0.5D-07 0.1D-05 0.2D-08
> 16 0.9D-15 0.5D-15 0.8D-14 0.4D-15 0.1D-13 0.4D-15
TABLEIV: f(x)=1/2 (x 1 —x2+ arcsinx) ,o=10
Iy, (£'50.1) Iy (£30.1) gy, (£'50.5) I (£30.5) I (F:09) ISm. 11 (f0.9)
4 1.7 1.7 0.8 0.8 -1. —-1.0
8 1.7 1.7 0.8 0.8 —1.07 —1.0
16 1.763 1.763 0.86 0.86 —1.07 —1.07
> 32 1.7634 1.7634 0.8641 0.8641 —1.073 —1.073
TABLEV: f(x)=1/2 (x\/l — 2 + arcsin x) L w=350
19, (f'50.1) Iy (£750.1) I (:0.5) I (£50.5) 19 (F:09) I (£50.9)
4 0.8 0.8 2.6 2.6 0.7 0.6
8 0.8 0.883 2.69 2.6 0.7 0.7
16 0.8832 0.8832 2.692 2.692 0.7 0.70
> 32 0.88327 0.88327 2.6924 2.6924 0.7097 0.7097
TABLE VI: f(x)=1/2 (x\/ 1— »2 + arcsin x) Lo =100
2 (F;00) 12 (f:00)  1g, (f0.5) (505 12 (7509) 12 (f:09)
4 —2.6 —2.6 2. 2.6 —0.7 —0.57
8 ~2.62 ~2.62 2.624 2.62 —0.61 —0.6
16 —2.623 —2.623 2.624 2.624 —0.61 —0.61
> 32 —2.6234 —2.6234 2.6246 2.6246 —-0.615 —0.615
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