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1. Introduction

In [1] the authors propose an approximate method for evaluating Cauchy singular integral with
rapidly oscillating kernel

Iω (f ; t) :=
∫ 1

−1

f (x)

x − t
eiωxdx, ω > 0, −1 < t < 1, (1)

and compare this method with some other numerical approximations available in previous literature.
The present paper is devoted to the issue of construction of two new algorithms for evaluating the

finite-part hypersingular integral

Jω (f ; t) :=
∫ 1

−1

f (x)

(x − t)2 eiωxdx, ω > 0, −1 < t < 1, (2)

taking into account the results in [1].
The mathematical modeling of wave processes, electromagnetic scattering and fracture mechanics

in many areas of physics and technology bring importance into the evaluation of singular and
hypersingular integrals with rapidly oscillating kernel (cf. [2]–[5]), and in the last years many papers
are devoted to numerical methods for approximating the integrals in (2) (see for example [6]–[8] and
the references given therein). Here, we follow the idea presented first in [1] and in [9], where quadrature
formulas are considered based on interpolation processes that are convergent, stable and can be
implemented with small attempt.

Defined the integral (1) as Cauchy principal value

Iω (f ; t) = lim
ε→ 0+

(∫ t−ε

−1
+

∫ 1

t+ε

)
f (x)

x − t
eiωxdx, ω > 0, −1 < t < 1,

the integral (2) can be written as the derivative of (1)

Jω (f ; t) = d
dt

Iω (f ; t) , ω > 0, −1 < t < 1,
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see ([10]). Moreover, from Lemma 6.1, Ch. II in [11], we can write

Jω (f ; t) =
∫ 1

−1

d
dx

(
f (x) eiωx

)
x − t

dx − eiωf (1)

1 − t
− e−iωf (−1)

1 + t
=

=
∫ 1

−1

f ′ (x) eiωx

x − t
dx + iω

∫ 1

−1

f (x) eiωx

x − t
dx − eiωf (1)

1 − t
− e−iωf (−1)

1 + t
, ω > 0, −1 < t < 1. (3)

Recalling that eiωx = cos ωx + isinωx, finally we obtain

Jω (f ; t) =
∫ 1

−1

cos ωx
(
f ′ (x) + iωf (x)

)
x − t

dx +

∫ 1

−1

sin ωx
(
f ′ (x) + iωf (x)

)
x − t

dx − eiωf (1)

1 − t
− e−iωf (−1)

1 + t
, ω > 0, −1 < t < 1. (4)

At first, we remember that if the functions f and f ′ are Hölder continuous then, we obtain the
existence of the integrals (1)–(3) (see [10]).

Very recently, in [9] the authors have presented a method for evaluating integral in (3) making
use of the values of f and f’ at the first kind Chebyshev zeros, proving bounds of the error and of
the amplification factor. Although the deduced formula has the drawback of using twice as many
functional evaluations, it has the advantage of having recourse only to the weights of the quadrature
sum proposed in [1] to approximate (1).

In the present paper we give two new algorithms to compute (3) which although use new weights,
have the advantage of making use only of the values of the function f at the same points, and are
convergent in a weaker condition on the smoothness of the density function f . Therefore, these latter
formulas are useful, for instance, in quadrature method for solving hypersingular integral equations
with rapidly oscillating kernel.

The paper is organized as follows: In Section 2 as well as presenting the algorithm, bounds of the
error and of the amplification factor are provided; in Section 3 we present an alternative approximative
method having the advantages of that ones in Section 2 about the computation and having a better
convergence behavior. Finally, in Section 4 we present some numerical examples that show the
coherence of the theoretical results with the numerical ones.

2. An Algorithm to Evaluate Integral (3)

From (4) we observe that the numerical approximation of (3) is strictly related to the quadrature of
the following integrals:

Iω
S

(
f ′; t

)
:=

∫ 1

−1

f ′ (x)

x − t
sin ωxdx, Iω

C

(
f ′; t

)
:=

∫ 1

−1

f ′ (x)

x − t
cos ωxdx, (5)

and Iω
S (f ; t) , Iω

C (f ; t) that can be approximated by using the methods in [1]. In [9] the authors have
suggested the use of

Îω
S,m

(
vα,β; f ′; t

)
:=

∫ 1

−1

Lm

(
vα,β; f ′; x

)
x − t

sin ωxdx

to approximate Iω
S

(
f ′; t

)
.

Here, in order to establish a formula that does not depend on the samples of the derivative function
f ′, we approximate f ′ in (5) with the Lagrange interpolant polynomial L′

m of the function f instead of
the Lagrange interpolant polynomial Lm of the function f ′. In what follow we will consider quadrature
formulas of Iω

S

(
f ′; t

)
, since the integral Iω

C

(
f ′; t

)
can be treated similarly. In particular, we consider the

following approximation

Iω
S,m

(
vα,β; f ′; t

)
:=

∫ 1

−1

L′
m

(
vα,β; f ; x

)
x − t

sin ωxdx, (6)

where the Lagrange polynomial Lm

(
vα,β; g

)
interpolates a given function g at the points xα,β

m,k, k =
1, . . . , m zeros of the mth Jacobi polynomial pα,β

m , m ∈ N with respect to the exponent α, β � −1.
First, let us introduce some notations.
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Let us denote by ωϕ (f ; δ) the modulus of smoothness of a given function g, defined as

ωϕ := Suph≤δ max
|x|≤1

∣∣�hϕg (x)
∣∣ ,

where ϕ (x) = √
1 − x2 and �hϕg (x) = g (x + h/2ϕ (x)) − g (x − h/2ϕ (x)), (cf. [12]). Further, we

denote by ‖g‖∞ = max|x|≤1 |g (x)| the usual uniform norm and by Λ
α,β
m , m ∈ N the mth Lebesgue

constant corresponding to the weight function vα,β (x) = (1 − x)α (1 + x)β , α, β � 1, |x| ≤ 1.
We shall study the convergence of the sequence Iω

S,m

(
v−1/2,−1/2; f ′; t

) = Iω
S,m

(
f ′; t

)
in (6) with α = β =

−1/2 to Iω
S

(
f ′; t

)
. For this purpose, we state a theorem showing the behavior of the function Iω

S

(
f ′; t

)
.

Theorem 1 Let f ∈ C1 and ω ≥ 0. Then for |t| < 1,

∣∣Iω
S

(
f ′; t

)∣∣ ≤ c log
e

1 − t2

{
(1 + ω) |f ′|∞ +

∫ 1

0

ωϕ

(
f ′; δ

)
δ

dδ

}
,

where c denotes a positive constant independent of t, f and ω. �
Proof. See Theorem 3.1 in [1].
We recall the next result on the simultaneous polynomial approximation of a given function g (see

[13], Theorem p. 113).
Lemma 2 For every function g ∈ Ck, there exists an algebraic polynomial qm of degree m ≥ 4k + 5

such that

∣∣g(i) (x) − q(i)
m (x)

∣∣ ≤ c

(√
1 − x2

m

)k−i

ω

(
f (k);

√
1 − x2

m

)
, i = 0, 1, . . . , k,

where |x| ≤ 1 and c is a positive constant independent of m, g and x.
In the previous lemma and in what follows ω (g; .) denotes the ordinary modulus of continuity of a

given function g.
Then, for the quadrature rule (6) with α = β = −1/2, the next result holds true.
Theorem 3 For every function f ∈ Ck, k ≥ 0 and ω ≥ 0, we have

∣∣Iω
S,m

(
f ′; t

)∣∣ ≤ c log
e

1 − t2
m2 log m (2 + ω + log m) ‖f ‖∞ , (7)

and

∣∣Iω
S

(
f ′; t

) − Iω
S,m

(
f ′; t

)∣∣ ≤ c log
e

1 − t2

{
ω

(
f (k); 1

m

)
mk−2

log m (2 + ω + log m) +
∫ 1

m

0

ωϕ

(
f ′; δ

)
δ

dδ

}
, (8)

where c denotes a positive constant independent of m, f , ω and t ∈ (−1, 1).
Proof. In view of Theorem 1 we can write∣∣Iω

S,m

(
f ′; t

)∣∣
≤ c log

e
1 − t2

⎧⎨
⎩(1 + ω)

∥∥∥L′
m (f )

∥∥∥∞
+

∫ 1/m

0

ωϕ

(
L′
m; δ

)
δ

dδ +
∫ 1

1/m

ωϕ

(
L′
m; δ

)
δ

dδ

⎫⎬
⎭

≤ c log
e

1 − t2

{
(1 + ω + log m)

∥∥L′
m (f )

∥∥∞ + 1
m

∥∥L′′
m (f )

∥∥∞

}

≤ c log
e

1 − t2
(2 + ω + log m)

∥∥∥L′
m (f )

∥∥∥∞

≤ c log
e

1 − t2
m2 (2 + ω + log m) ‖Lm (f )‖∞ ,

by using Bernstein inequality. Hence (7) follows from ‖Lm (f )‖∞ = O (log m) when α = β = −1/2.
In order to prove (8) we remark that in view of Theorem 1

∣∣Iω
S

(
f ′; t

) − Iω
S,m

(
f ′; t

)∣∣ =
∣∣∣Iω

S

(
f ′ − L′

m (f ) ; t
)∣∣∣

≤ c log
e

1 − t2

⎧⎨
⎩(1 + ω)

∥∥∥f ′ − L′
m (f )

∥∥∥∞
+

∫ 1

0

ωϕ

(
f ′ − L′

m; δ
)

δ
dδ

⎫⎬
⎭ . (9)
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Now let qm−1 be the polynomial of Lemma 2. Thus∥∥∥f ′ − L′
m (f )

∥∥∥∞
≤

∥∥∥f ′ − q
′
m−1

∥∥∥∞
+

∥∥∥L′
m (qm−1 − f )

∥∥∥∞

≤ c
{

1
mk−1

ω

(
f (k−1);

1
m

)
+ 1

mk
ω

(
f (k);

1
m

)∥∥∥L′
m

∥∥∥∞

}

≤ c
1

mk−2
ω

(
f (k);

1
m

)
log m. (10)

Further

∫ 1

0

ωϕ

(
f ′ − L′

m; δ
)

δ
dδ

≤ ∫ 1
m

0

ωϕ

(
f ′−q

′
m−1;δ

)
δ

dδ + ∫ 1
1
m

ωϕ

(
f ′−q

′
m−1;δ

)
δ

dδ + ∫ 1
m

0

ωϕ

(
L′
m(qm−1−f );δ

)
δ

dδ + ∫ 1
1
m

ωϕ

(
L′
m(qm−1−f );δ

)
δ

dδ

≤ c

{∫ 1
m

0

ωϕ

(
f ′; δ

)
δ

dδ + log m
∥∥f ′ − q′

m−1

∥∥∞ + 1
m

∥∥L′′
m (qm−1 − f ) ϕ

∥∥∞

+ log m
∥∥L′

m (qm−1 − f )
∥∥∞

}
≤ c

{∫ 1
m

0

ωϕ

(
f ′; δ

)
δ

dδ + log m
mk−1

ω

(
f (k);

1
m

)

+ m2 (1 + log m) ‖Lm‖∞ ‖qm−1 − f ‖∞

}
(11)

≤ c

{∫ 1
m

0

ωϕ

(
f ′; δ

)
δ

dδ + logm
mk−2

(1 + log m)ω

(
f (k);

1
m

)}
,

having used again Bernstein inequality, Lemma 2 and ‖Lm (f )‖∞ = O (log m) for α = β = −1/2.
Combining (10) and (11) with (9) we deduce (8). �

We want to emphasize that from (7) we can deduce the following bound∥∥∥∥ Iω
S,m

(
f ′) log−1 e

1 − (.)2

∥∥∥∥ ≤ cm2 log m (2 + ω + log m) ,

that provides the behavior of the weighted amplification factor.
We go on to see how to compute Iω

S,m

(
f ′; t

)
in (6) with α = β = −1/2. So we denote by

p
− 1

2 ,− 1
2

0 (x) = p0 (x) = 1√
π

, p
− 1

2 ,− 1
2

m (x) = pm (x) =
√

2
π

Tm (x) , m ≥ 1

the m-th Chebyshev orthonormal polynomial of the first kind and let x−1/2,−1/2
m,k = xm,k =

cos ((2k − 1) π/2m) be the zeros of the orthogonal polynomial Tm. Since

L′
m

(
v− 1

2 ,− 1
2 ; f ; x

)
= L′

m (f ; x) =
m∑

k=1

l
′
m,k (x) f

(
xm,k

)
,

where lm,k, k = 1, . . . , m are the fundamental Lagrange polynomials with respect to the points
xm,k, k = 1, . . . , m, we have

Iω
S,m

(
f ′; t

) =
m∑

k=1

[∫ 1

−1

l
′
m,k (x)

x − t
sin ωxdx

]
f
(
xm,k

)
,

with

l
′
m,k (x) =

m−1∑
i=1

ai
d
dx

pi (x) , k = 1, . . . , m,

and

ai =
∫ 1

−1

lm,k (x) pi (x)√
1 − x2

dx = π

m

m∑
j=1

lm,k
(
xm,j

)
pi

(
xm,j

) = π

m
pi

(
xm,k

)
, i = 1, . . . , m − 1.
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Thus,

l
′
m,k (x) = 2

m

m−1∑
i=1

Ti
(
xm,k

)
T

′
i (x) , k = 1, . . . , m,

and

Iω
S,m

(
f ′; t

) = 2
m

m∑
k=1

[
m−1∑
i=1

Ti
(
xm,k

)
q

′ω
i (t)

]
f (xm,k), (12)

where

q
′ω
i (t) =

∫ 1

−1

T
′
i (x)

x − t
sin ωxdx, i = 1, 2, . . . .

Denoting by {Un}n∈N the sequence of the Chebyshev orthogonal polynomials of the second kind, we
have

T
′
n (x) = nUn−1 (x) , n = 1, 2, . . . ,

and

U0 (x) ≡ 1, U1 (x) = 2x, Un+1 (x) = 2xUn (x) − Un−1 (x) , n = 1, 2, . . . .

Therefore

q
′ω
i (t) = iqω

i−1 (t) , i = 1, 2, . . . ,

where

qω
i−1 (t) =

∫ 1

−1

Ui (x)

x − t
sin ωxdx, i = 0, 1, . . . .,

qω
n+1 (t) = 2tqω

n (t) − qω
n−1 (t) + 2M

ω

n , n = 1, 2, . . . , (13)

and

M
ω

n =
∫ 1

−1
Un (x) sin ωxdx, n = 0, 1, . . . .

The accurate evaluation of M
ω

n in (13) allows us to compute qω
n (t) for n = 0, 1, . . . , together with

qω
0 (t) =

∫ 1

−1

sin ωx
x − t

dx = sin ωx [Ci (τ1) − Ci (|τ2|) ] + cos ωx [Si (τ1) + Si (|τ2|) ] ,

and

qω
1 (t) = 2

∫ 1

−1

x sin ωx
x − t

dx = 2tqω
0 (t) ,

where

Si (τ ) =
∫ τ

0

sin x
x

dx, Ci (τ ) =
∫ τ

0

cos x − 1
x

dx + logτ + C, τ > 0,

are the sine and cosine integral, respectively; τ1 = ω (1 − t) , τ2 = −ω (1 + t) and C is the Euler
constant. The starting values of (13) require the evaluation of the sine and cosine integrals that can be
computed by some mathematical software like Mathematica [14]. Finally, we remark that (12) can be
rewritten

Iω
S,m

(
f ′; t

) = 2
m

m−2∑
i=0

cm,i(f )qω
i (t) , (14)

with respect to the coefficients

cm,i (f ) =
m∑

k=1

(i + 1) Ti+1
(
xm,k

)
f
(
xm,k

)
, i = 0, 2, . . . , m − 2,
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which are not influenced by the value t and the oscillatory factor ω. Thus the evaluation of Iω
S,m

(
f ′; t

)
in (14) can be done following Clenshaw type algorithm of this kind:

zm = zm−1 = 0, wm−1 = 0,

zk = 2tzk+1 − zk+2 + cm,k (f ) , k = m − 2, m − 3, . . . , 0

wk = 2zk+1M
ω

k + wk+1, k = m − 2, m − 3, . . . , 0

Iω
S,m

(
f ′; t

) = 2
m

(
qω

0 (t) z0 + w0
)

.

We want point out that even if the quadrature Iω
S,m

(
f ′; t

)
is to preferred to use formula (6) in [9],

because it does not use the values f ′ (xm,k
)

, k = 1, . . . , m, from a convergence point of view it performs
worse (cf. the previous theorem and Theorem 1 in [9]). This is due to the fact that Iω

S,m

(
f ′; t

)
uses the

operator L′
m which performs worse that the operator Lm used in [9]. Indeed, the Lagrange operator is

not good for the simultaneous approximation even if we start from an optimal choice of interpolation
points as in the case α = β = −1/2.

3. Another Algorithm to Evaluate Integral (3)

In the sequel we shall propose a new formula to compute Iω
S

(
f ′; t

)
having the advantages of Iω

S,m

(
f ′; t

)
about the computation and having the same convergence behavior of formula (2.6) in [1].

We introduce the polynomial Lm,1,1 (g) interpolating a given function g at the points xm,k, k =
1, . . . , m, zeros of Tm and at xm,0 = −1, xm,m+1 = 1

Lm,1,1 (g; x) = (
1 − x2

)
Lm(

g

1 − (.)2 ; x) + [(−1)m (1 − x) g (−1) + (1 + x) g (1) ]
Tm(x)

2
.

Then we consider the new quadrature rule

Iω
S,m,1,1

(
f ′; t

) = Iω
S

(
L′

m,1,1 (f ) ; t
)

to approximate Iω
S

(
f ′; t

)
. For it we can prove the following result.

Theorem 4. For every function f ∈ Ck, k ≥ 0 and ω ≥ 0, we have

∣∣Iω
S,m,1,1

(
f ′; t

)∣∣ ≤ clog
e

1 − t2
logm (2 + ω + logm) ‖f ‖∞ , (15)

and

∣∣Iω
S

(
f ′; t

) − Iω
S,m,1,1

(
f ′; t

)∣∣ ≤ clog
e

1 − t2

{
ω

(
f (k); 1

m

)
mk−1

log m (2 + ω + log m) +
∫ 1

m

0

ωϕ

(
f ′; δ

)
δ

dδ

}
, (16)

where c denotes a positive constant independent of m, f , ω and t ∈ (−1, 1).
Proof. To prove (15) and (16) we can follow the same steps to prove (7) and (8), respectively. Thus,

the proof follows recalling that
∥∥∥L′

m,1,1

∥∥∥ = O (log m) in view of Corollary 3.2 in [15].

We remark that the assumption of the existence of the Hölder continuous derivative f ′ besides
ensuring the existence ofIω

S

(
f ′; t

)
it provides the convergence of Iω

S,m,1,1

(
f ′; t

)
(cf. Theorem 4). Instead,

the same hypothesis on the smoothness on f does not ensure the convergence of Iω
S,m (f ; t) (cf.

Theorem 3).
Finally, by standard computations we try

Iω
S,m,1,1

(
f ′; t

) = 2
m

m∑
k=1

⎧⎨
⎩

m−1∑
j=2

Tj
(
xm,k

) [−2
(

tqω
j (t) + Mω

j

)
+ (

1 − t2) jqω
j−1 (t) − jtM

ω

j−1

− j
(

M
ω

j − Mω
j

)]
− tqω

0 (t) + xm,k

[
6
ω2

[ω cos ω − sin ω] − 2tqω
1 (t)

+ (
1 − t2) qω

0 (t)
]} f

(
xm,k

)
1 − x2

m,k

+ (−1)m+1

2

{
qω

m (t) + m
[
M

ω

m−1 − (1 − t) qω
m−1 (t)

]}
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f (−1) + 1
2

{
qω

m (t) + m
[
M

ω

m−1 + (1 + t) qω
m−1 (t)

]}
f (1) ,

where qω
n (t) and M

ω

n , n = 0, 1, 2 . . . are the same defined before and where

qω
n (t) =

∫ 1

−1

Tn (x)

x − t
sin ωxdx, n = 0, 1, . . . ,

Mω
n =

∫ 1

−1
Tn (x) sin ωxdx, n = 0, 1, . . . .

Recalling that the polynomials Tn, n ∈ N, satisfy

T0 (x) ≡ 1, T1 (x) = x, Tn+1 (x) = 2xTn (x) − Tn−1 (x) , n = 1, 2, . . . ,

we try

qω
n+1(t) = 2tqω

n (t) − qω
n−1(t) + 2Mω

n , n = 1, 2, . . . . (17)

The evaluation of the integral Mω
n in (17) allows us to compute qω

n (t) for n = 1, 2, . . ., together with
qω

0 (t) = qω
0 (t) and qω

1 (t) = 1/2qω
1 (t).

4. Numerical Examples

In this Section we consider two numerical examples with the aim of showing the correspondence
between the numerical results and the theoretical ones by applying the algorithms presented in the
previous Sections. All the computations have been performed in double precision arithmetic.

In the first test we choose the function f (x) = exp (x), so that f ′(x) = exp(x). In this case we
know the exact solution, therefore we compare this with the numerical solutions obtained using the
two proposed methods. We denote by

Eω
S,m

(
f ′; t

) = Iω
S

(
f ′; t

) − Iω
S,m

(
f ′; t

)
and Eω

S,m,1,1

(
f ′; t

) = Iω
S

(
f ′; t

) − Iω
S,m,1,1

(
f ′; t

)
,

the errors obtained with two different methods. In Tables I–III we show the errors of the two
methods, compared with the exact solution of the integral evaluated with Mathematica package, for
three different values of t ∈ (−1, 1) , ω and for increasing values of m ∈ N.

In the second example we choose the function f (x) = 1/2
(

x
√

1 − x2 + arcsin x
)

, so that f ′ (x) =√
1 − x2. In such case we don’t know the exact solution, and in Tables IV–VI we consider only the

correct digits obtained using the two proposed methods and, as in the first example, for three different
values of t ∈ (−1, 1), ω and for increasing values of m ∈ N. Taking into account the regularity of
the functions considered in the examples, Theorems (3) and (4) give the same order of convergence, as
we can see looking at the results presented in Tables I–III. Better results are obtained with the second
method when the function is less regular.

TABLE I: f (x) = exp (x) , ω = 10

m Eω
S,m

(
f ′; 0.1

)
Eω

S,m,1,1

(
f ′; 0.1

)
Eω

S,m

(
f ′; 0.5

)
Eω

S,m,1,1

(
f ′; 0.5

)
Eω

S,m

(
f ′; 0.9

)
Eω

S,m,1,1

(
f ′; 0.9

)
4 0.1D-01 0.4D-03 0.1D-01 0.3D-03 0.9D-01 0.1D-02
8 0.2D-05 0.2D-07 0.5D-06 0.1D-07 0.6D-05 0.5D-07

≥ 16 0.1D-14 0.5D-15 0.2D-14 0.3D-15 0.1D-10 0.9D-14

TABLE II: f (x) = exp (x) , ω = 50

m Eω
S,m

(
f ′; 0.1

)
Eω

S,m,1,1

(
f ′; 0.1

)
Eω

S,m

(
f ′; 0.5

)
Eω

S,m,1,1

(
f ′; 0.5

)
Eω

S,m

(
f ′; 0.9

)
Eω

S,m,1,1

(
f ′; 0.9

)
4 0.8D-02 0.2D-03 0.8D-01 0.2D-02 0.8D-01 0.8D-03
8 0.1D-05 0.1D-07 0.5D-05 0.5D-07 0.6D-05 0.9D-09

≥ 16 0.1D-14 0.3D-15 0.2D-14 0.2D-15 0.3D-14 0.8D-15

Vol 6 | Issue 2 | April 2025 17



New Algorithms to Compute Hypersingular Integrals Capobianco and Criscuolo

TABLE III: f (x) = exp (x) , ω = 100

m Eω
S,m

(
f ′; 0.1

)
Eω

S,m,1,1

(
f ′; 0.1

)
Eω

S,m

(
f ′; 0.5

)
Eω

S,m,1,1

(
f ′; 0.5

)
Eω

S,m

(
f ′; 0.9

)
Eω

S,m,1,1

(
f ′; 0.9

)
4 0.2D-01 0.7D-03 0.8D-01 0.2D-02 0.9D-01 0.6D-03
8 0.3D-05 0.3D-07 0.5D-05 0.5D-07 0.1D-05 0.2D-08

≥ 16 0.9D-15 0.5D-15 0.8D-14 0.4D-15 0.1D-13 0.4D-15

TABLE IV: f (x) = 1/2
(

x
√

1 − x2 + arcsin x
)

, ω = 10

m Iω
S,m

(
f ′; 0.1

)
Iω

S,m,1,1

(
f ′; 0.1

)
Iω

S,m

(
f ′; 0.5

)
Iω

S,m,1,1

(
f ′; 0.5

)
Iω

S,m

(
f ′; 0.9

)
Iω

S,m,1,1

(
f ′; 0.9

)
4 1.7 1.7 0.8 0.8 -1. −1.0
8 1.7 1.7 0.8 0.8 −1.07 −1.0
16 1.763 1.763 0.86 0.86 −1.07 −1.07

≥ 32 1.7634 1.7634 0.8641 0.8641 −1.073 −1.073

TABLE V: f (x) = 1/2
(

x
√

1 − x2 + arcsin x
)

, ω = 50

m Iω
S,m

(
f ′; 0.1

)
Iω

S,m,1,1

(
f ′; 0.1

)
Iω

S,m

(
f ′; 0.5

)
Iω

S,m,1,1

(
f ′; 0.5

)
Iω

S,m

(
f ′; 0.9

)
Iω

S,m,1,1

(
f ′; 0.9

)
4 0.8 0.8 2.6 2.6 0.7 0.6
8 0.8 0.883 2.69 2.6 0.7 0.7
16 0.8832 0.8832 2.692 2.692 0.7 0.70

≥ 32 0.88327 0.88327 2.6924 2.6924 0.7097 0.7097

TABLE VI: f (x) = 1/2
(

x
√

1 − x2 + arcsin x
)

, ω = 100

m Iω
S,m

(
f ′; 0.1

)
Iω

S,m,1,1

(
f ′; 0.1

)
Iω

S,m

(
f ′; 0.5

)
Iω

S,m,1,1

(
f ′; 0.5

)
Iω

S,m

(
f ′; 0.9

)
Iω

S,m,1,1

(
f ′; 0.9

)
4 −2.6 −2.6 2. 2.6 −0.7 −0.57
8 −2.62 −2.62 2.624 2.62 −0.61 −0.6
16 −2.623 −2.623 2.624 2.624 −0.61 −0.61

≥ 32 −2.6234 −2.6234 2.6246 2.6246 −0.615 −0.615
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