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1. PRELIMINARIES

Let G be a group, assume that H is a normal subgroup of G, K is a subgroup of G, H N K = {1},
and G = HK. Suppose that K acts on H by automorphisms of H, then there exists a homomorphism
¢: K — Aut(H). Assume the action is by conjugation, then for k € K and & € H we have
k.h = @ (k) (h) = khk™'. G is an internal semidirect product of H and K by ¢, it is denoted by
G=Hx,KI[l].

Non-abelian groups of orders p?, for a prime p > 3 are of two types [1]:

Gi = Cp (@) %,G, () and Gy = (G, (@) x Gy (B)) %, Cy (7).

Thus, )
G =<a,ﬁ: o =pP =1, Ba :oz1+pﬂ>

d
a Gr=(e.p.y: ol =B =y’ = 1,0 = Ba. yp = By.va = afy)

Let F be a field. A ring A with unity is an algebra over F (breifly F-algebra) if A is a vector space
over F and the following compatibility condition holds (sa).b = s (a.b) = a.(sb) for any a,b € A and

any s € F. A is also called associative algebra (over F). The dimension of the algebra A is the dimension
of A as a vector space over F.

Theorem 1 [2]

Let 4 be a n-dimensional algebra over a field F. Then there is a one-to-one algebra homomorphism
from A4 into M, (F), the algebra of n-matrices over F.

Let G = {g1=1,8,...,g,} be a finite group of order » and F a field. Define FG =
{a1g1 + axgr + ... + a,gy: a; € F}. FG is n-dimensional vector space over F with basis G. Multiplica-
tion of G can be extended linearly to FG. Thus, FG becomes an algebra over F of dimension n. FG is
called group algebra. The following identifications should be realized:

(1) Opgg = 0pg = 0 forany g € G.
(i) 1rgG = grg = g for any g € G. In particular 1zlg = lpg = 1.
(iii) aplg = apg for any a € F.
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A circulant matrix M on parameters ag, ay, . . ., a,_ is defined as follows:
ay dp—1--- A
ajy ap - ar
M(a()’ala"-aan—l): :
ap—1  dp-2 ao
This matrix may be denoted in terms of its columns by [col (a) |col (a,—1)]| ... |col(ar)].

M is said to be circulant block matrix if it is of the form M (M, M,, ..., M,) . i.e., it is circulant
blockwise on the blocks My, M, ..., M,.

Thus,

2. MAIN RESULTS

Theorem 2 [3]
Let F be a field and G = («a: «”" = 1) a cyclic group of order n. Then any element aygl +aja + ... +

10"~ of FG can be represented with respect to the ordered basis {1, a,...,a""'} by the circulant
matrix M (ap, ai,...,a,—1).
Proof

Letw = aol + a1 + ... + a,_12" ! bein FG. wa = apa + a1a® + ... + a,_11 = a,_11 + apa +
vt apa™ N owe™ ™ = g il o a0 = a1l + aa + ...+ ape’ !, Then the

ap dp—1--- a
. . . . . a  dg --- L
matrix representation of w with respect to the basis {1, a,... ,a”fl} is . . .| which is
ap—1 ap—2-++ do

M(aO’ al? A ﬂan—l)'

Note that if the order of the basis elements is changed, we obtain a different matrix of representation.
The new matrix is obtained by suitable interchanging of the columns of the matrix M (ag, a1, . .., a,—1).
In [4] the representation is done for the non-split metacyclic group.

For more complicated finite groups we use the circulant block matrices to do the required
representations.

Now, let G be an internal semidirect product of H and a cyclic group K = (y) by ¢.

Then the matrix representation [w] of the general element w in FG is given as follows:

G = H x, K, 9: K — Aut(H) is a homomorphism, ¢ (y) (h) = yhy~'. Suppose that H =
{hi,ha,....h}, K = Cyu(y) = {l,y,...,y™'} then the general element w in FG is w = a1 +
ayhy1+ ... +ayh,1 +an+lhl 14 +an+2h2y +... +a2nhn7/ + a2n+lhl Vz +... +a3nhn)/2 +... +amnhnymil'
Now we can write w as:

w=wi+wr+ ...+ Wy,

where wy = a1 +ahl +...4+ah,1
Wy = a1y + anohoy + ..+ ahyy
Wm = a(rn—l)(l’H—l)hlVWH1 +...+ amnhnyrrk1
The matrix representation [w] of wis [w] = M ([w]],[wz]’” - .,[vv,,,]le), where y': H — H

is the automorphism y' = ¢ (y) (h) = y'hy~" and [w;] = [col () |col (hy)]. .. |col(h,)], [w,-]yi =
[col (¥'(hD) |col (y' (h2))] ... |col (y' (hy))|]- Thus, we get the following theorem:

Theorem 3
With the above notations, the matrix representation [w] of the general element w in FG.
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m—1

[wl] [Wm]y N [WZ])/2
[W2]y [Wl] s [Wm]y
[w] = . .
L L (0 ]

3. APPLICATIONS

Finally, we use theorem 3 to compute the matrix representations of FG; and FG,, when the prime
p=3.

)G, = <a,ﬁ: o = B3=1,pa= ozl+3,3>

= {1,a,a2, ol BoaB,a’B, ... a8, B2 aB? B, ... ,agﬂz}.
The general element of FG; is w = agl + aja + ... + aga® + aof + aypaf + ... + ay7a®B + agp® +
a1905,32 +...+ Cl260l8/32. Let wi = apl + a1 + ... + agag, wy = agB + ajpaf + ...+ 6117058/3, w3 =
algﬂz + a1906,32 + ...+ azéocgﬂz. Then w = wy + wy + ws.
Dol Desl® el
By theorem 3, matrix representation of wis [w] = | [w,]?  [wi] [14;3]/32

sl? [l [l

ay dg d7 de ds5 d4 d3z dy dj
ay do d4dg d7 de ds dg4 d3 Ay
d dy dp dg d7 deg ds5 d4 A3
ay dy day dp dg d7 de ds dy
wil=|as a3 a a a a a7 as as
as d4 d3 dy dy dop dg d7 dg
de ds d4 d3 dy dy Ay dg a7
a; de ds d4 d3z dy dy dop dg
ag d7 de ds d4 dz dy di A

G = Gfa) xy, G(B), ¢: C3(B) —  Aut(Cy{x)) is a homomorphism such that
9 (B) (@) = B’

e B () =p17" = 1,0 () (@) = Bap™" =a*, ¢ (B) goﬁ) =B’ =ab, 9 (B) (&) = pa’p =
o, 0 (B) (o) = aB™! = o, 9 (B) (&®) = Ba’B~! =a?, 9 (B) (@°) = Ba®B7! =ab, 0 (B) () =
Ba'B =a, ¢ (B) (a®) = BB~ =’

[wa] = [col (1) |col ()] col (az) |col (a3)| col (Ol4) |col (a5)| col (a6) |col (oz7) |col (ag)]

wa]? = [col (1) ’col (a4)| col (ag) |col (a3)’ col (a7) |col (a2)| col (oz6) |col (&) |col (055)]

ay ay ayp | ais ann ai | anp ayy ap

ap ais ayin | aig ap ay; | a3z dy  ap

ayn aie app | a;;z a3 as | as ap as

ap a7 aiz | oay aiy aip | ais an  ag

P =| a3 a au | ao ais an | ae an an

aiy ayp as | oan ae ap | a7 aiz  ag

a5 ann aig | ann ai; aiz | ay ay ap

ae app a7 | a3z ay aiy | ap ais ap

| a7 a3 a9 | ais a ais | an aie an |
)
¢ (B%) (@) = B*ap
¥ 3(,3 ) =812 =10 ZZ (01)2 prap=? = Og , (/322)5(“22 = 2062/3_26— Oés, % (/322)6(0l32 =
/36 B 2—06 ¢(€)7( Y = g ﬂ2 = a, w(ﬂ)( 2=ﬂ2aﬂ‘ =a®, ¢ (B°) () = B*a’B? =
a® ¢ (B%) (@) =P’ =0 ¢ (ﬂ)(a)Zﬂa 2 =a’

[wi] = [col (1) |col ()] col (az) |col (a3)| col (Ol4) |col (a5)| col (a6) |col (a7) |col (as)]
[W3]ﬂz = [col (1) |col ()| col () |col ()| col (@) |col ()| col () |col (a*) |col ()]
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aig ay axp | au axy ay | axy a3 axs
ay ay ax | axs aig ax | axn axn  ax
ay ap ay | ay ayg an | axn axs ag
. a) ax as | aig ax axn | au ax ap
w3l =| an au ax | aw an an | as ais ax
a axs aig | ax axn ax | ax ay ay
axy ax ai | an axp ax | aig ax an
as aig ay | an au axs | a9 ay an
| @6 a9 axn | axn as aig | ax axn axy |

2) Gy = (o, By’ =4 =y’ =108 = Ba,yB = By,ya =afy) Gy = {l,a,a?, B,aB,a*B, B,
af? o’ y,ay, ey, By, aBy, By, By, aBly, o? By, v ay? oyt By aBy? a?By?, By, ap?
y2 a?pry?}

The general element of FG, is w = agl 4+ ajo 4+ ara® + a3 + asaf + asa’ B + ag B> + arap? + aga® B +
agy +apay +ane’y +apfy +aafy +aua’By +aispry +aeaf’y +ape’ By +aisy? +apay’ +
ana’y? + a By? + anafy? + ana’ By’ + aup’y? + asafly? + axa’ iy

wi = apl + aja + are® + asf + asaf + a5ot2,3 + a6,32 + a7aﬁ2 + agazﬁz

Wy = agy + ajpay +ana’y +anfy +aafy + aud’ By + aisBry + aigaf’y

w3 = aisy? + aay? + ane’y? + an py’ + anafy’ + ana’ By’ + aupty? + asap’y? + axe’ Ay’

Then w = wy + wy + ws.

D] sl [l

The matrix representation of wis [w] = | [w,]”  [w] [w3]?”2

sl ol [wi]

ap a ar | as as a7 | az as a
ay ay ax | a7 as ag | a4 az as
a ay ay | ay a7 as | as as as
az as ay | a a a | as ag a
] = as a3 as | a1 ay a | a7 ag ag
as aqs a3 | a a a | ag a7 ag
ag ag a7 | az as as | ay ar a
a7 as ag | a4 a3 as | a1 ay a
L ag a7 ag | as as a3 | a ar a 1

Gy = (C3 (o) x C3(B)) Xy C3{y), ¢: C3(y) = Aut(Cs {a) x C3(B)) is a homomorphism such that
¢ ) (@) =yay™.

) =yly ' =Low @ =yay™ =aB, o) () = yaly™ ' = ?B0()(B) =
yBy ' =B.0(y) @B) = yaBy ' = ap’ o (v) (@?B) = ya?By = o (y) (B?) = yBy ' = B,
o) (@B?) =yaply ™ =a, 0 (y) (?B) = ya? By~ = a?B.

1

[wa] = [col (1) |col ()| col (?) |col (B)| col (@B) |col (o?B)| col (B?) |col (ap?) |col (o B7)]

wa]” = [col (1) |col (aB)] col (a*B?) Icol (B)] col (ap?) |col (o?) | col (B?) Icol () |col (?B)]
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[ ay a7 aiz | ais aww aw | an an  a
ap a5 au | aie ap an | aiz as  apg
ann aie ap | ay;; aiz as | aig ap  ais
ap ann aie | ay aiz aiz | ais ais ap

Wl = a3 a ay | aw as aw | ai ann an
aiy aypp ais | an aie ap | ayp a3z ay
a5 ai ap | anp an aie | as a7 ais
aig aip an | a3 ay ap; | aip ais au

L a7 a3 ay | ais aw ais | an ai dan |

() (D)=yly =19 () (@ = y2ay? aﬁ2 (Vz) (a? =ylaly 2 =a’B, 0 (y?) (B)
By = Bo(¥)@B) = yiepy ™t = a, ¢ 2B) = yra?By 2 = o?B% ¢ (v?) (B?)
viB*y 2= BA e (v?) (aB?) = y*aB’y 2 =aB, ¢ ) ( B

) =y aZIBZV 2 _
[ws] = [col (1) |col ()| col (a?) |col (B)| col (@B) |col (o?B)| col (B*) |col (ep?) |col(a® B)]

I\.)
v
A

[W3]V2 = [col (1) |col (aﬂ2)| col (azﬁ) |col (B)] col () |col (a2ﬂ2)| col (,32) |col (af3) |col(a2)]

ag a3 s | an ax axn | ax ax ap

alg ay ax | axs aig axn | axn axy ax

ay ap ay | ax dayg an | axn axs ag

) a1 ae ayy | aig a3 axs | ax axyy ax
[wa]/" = | an aw ax | a9 ax ax | as aig an
a3 a5 aig | ax axn ax | ax ay a

ay ax ap | an ax ayg | aig axn ax;

as aig axp | an au ayxy | a ax axy

| ax a9 axn | ax as ais | ax axn ax |

For greater prime p, the same method may be applied.
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