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On Infinite Series and with Their Some Applications to
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Abstract — Infinite series is still used in engineering,
mathematical and physical sciences.In the modern area a great
progress is made in the sciences of calculus in addition to what
was accompanied by advances in infinite series and their some
applications .The aims of this paper is to develop and introduces
the infinite series and their some applications to Euler's
summation , also we show and explain how to apply the infinite
series in Euler's summation .We followed the induction
mathematical method and found that : The relationship
through the Euler's summation focused on the physical link
questioner to make the study as an application for Euler's
summation so it can be the beginning of advanced study in
concept of the infinite series and their some applications to
Euler's summation.

Index Terms — Applications, Euler's Summation Formula,
Infinite Series.

I. INTRODUCTION

In this study, we deal with an infinite series and some
applications to Euler's summation and asymptotic
expansions. Firstly, we spoke about the sequences, then we
dealt with the derivatives, after that we explained different
concepts which related to infinite series, finally we discuss
the vectors and applied Euler's summation formula and
asymptotic expansions to infinite series.

Il. THE INFINITE SERIES
A. Definition

If {a,}§ is an infinite sequence of real numbers, the
symbol Y7, a,, is an infinite series, and a,, is the nth term
of the series. We say that),_, a,is converges to the sum 4,
and write Y;°_, a,, = A [4] if the sequence {4,,}; defined by:

An = ag +aK+1 .........+an,n = k,

converges to A.

The finite sum 4,, is the nth partial sum of Y7, a,. If
{A,.}7 diverges, we say that{4,}; diverges; in particular, if
lim A,, = o0 or —oo, we say that >';°_, a, = oo diverges to

n—oo
oo or —oo, and write Yo a, = © Or Y0, a4, = —0.

A divergent infinite series that does not diverge to +oo is
said to oscillate or be oscillatory.

We usually refer to infinite series more briefly as series.
[17].
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B. Example
Consider the series Yoo 7™, —1 < r < 1.
Here a, =r™ .(n > 0) and

1+l

Ay, =1+r+712+ ... +7rt =

1)

1-r

which converges to i asn — oo; thus, we write:
Zfzornzi,—l <r<1liflr]>1
then (1) is still valid, but };;>_, n,, Diverges, if r > 1, then

Yn=oTy = © )

Ifr <1, )5 ,1, oscillates, since its partial sums alternate
in sign and their magnitudes become arbitrarily large for
largen. Ifr = —1, then A, =0 and 4,,, =1 form >
0, while ifr =1,4, = n+1; in both cases the series
diverges, and (2) holds or r = 1 [1].

The series Y., 17, is called the geometric series with ratio.
It occurs in many applications. An infinite series can be
viewed as a generalization of a finite sum

N
A=Zan=aK+aK+1 +aN
n=k

By thinking of the finite sequence {ak, ax4q, ..., ay} as
being extended to an infinite sequence {a,}; , witha, =0
for n > N. Then the partial sums of Y\, a,, are:

An =aK+aK+1 .+an,kSTl<N,
And
A, =An>NI[6]

That is, the terms of {a,,};’ equal the finite sum A forn >
k. Therefore, lim A, = A.
n—-oo

C. Theorem

Let Yo a, =A and Y,_, b, = B where Aand B are
finites: Then Y>>, ca, = cA, c is a constant.
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Yn=k(@n+by)=A+B and X7 .(a,—b,)=A-B
[11].

These relations also hold if one or both of A and B is
infinite, provided that the right sides are not indeterminate:
Dropping finitely many terms from a series does not alter
convergence or divergence, although it does change the sum
of a convergent series if the terms dropped have a nonzero
sum. For example, suppose that we drop the first k terms of
a series Yo, a, an, and consider the new series >, a,.
Denote the partial sums of the two series by:

A, =ayta+-...+a,,n=0
And

A, =ag + agpq oo ay, n = k.

Since

A, =(ag+ay+-...4a_1) + 4, , n =k,

It follows that A = lim A,, exists (in the extended reals) if
n—-oco
and only if:

A" = lim Aj, does, and in this case

n-oo

A=(y+a;+...+a,_,) +A [16].

D. Lemma

Suppose that for n sufficiently large (that is, for n >=some
integer N).

The terms of )", a,, satisfy some condition that implies
convergence of an infinite series. Then },;"_, a,, converges:
Similarly, suppose that for n sufficiently large the terms
Yk Ay, Satisfy some condition that implies divergence of an
infinite series: Then Y7, a, diverges.

E. Example

Consider the alternating series test, which we will
establish later as a special case of a more general test:
The series Y o-y a,, converges if (—=1)"a,, > 0,

|an+1] < layl,and lim a, =0
n—-oo

The terms of

[oe]

=

n=1

Do not satisfy these conditions for all n = 1, but they do
satisfy them for sufficiently large n. Hence, the series
converges, by Lemma.

We will soon give several conditions concerning
convergence of a series Y, a, with nonnegative terms.
According to Lemma, these results apply to series that have
at most finitely many negative terms, as long as a, is
nonnegative and satisfies the conditions for n sufficiently
large.

When we are interested only in whether Y, a,
converges or diverges and not in its sum, we simply say
“Y a, converges” or “Y, a,, diverges.” Lemma (5-1) justifies
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this convention, subject to the understanding that}: a, stands
for Yoy a,, Where k is an integer such that a,, is defined for

1 . 1
n = k. (Forexample, . o7 stands for Y.7_ o where

k =7.) We write ) a, = o (—o) If ) a, diverges to
oo (—oo)finally, let us agree that Y77, a, and X0y Gy -

(Where we obtain the second expression by shifting the
index in the first) both represent the same series. [3]

F. Corollary
lim a, = 0.1t must be

If Ya, then
n—-oo
emphasized that Corollary (2.6) gives a necessary condition

for convergence; that is Y a, cannot converge unless
lim a, = 0 .The condition is not sufficient; ) a, may
7(ii_)vof;rge even if lim a, = 0. We will see examples below
[13]. o

G. Corollary

If 3 a,, converges; then for each € > 0 there is an integer
K such that

converges;

[ Yook an | <€ifk =K
That is,

}lim Yk an = 0 [10].

I11. SERIES OF NONNEGATIVE TERMS

The theory of seriesy. a,, with terms that are nonnegative
for sufficiently large n is simpler than the general theory,
since such a series either converges to a finite limit or
diverges to oo, as the next theorem shows [8].

A. Example
n
Since%<r“,n21, and Y <o if 0< r <1, the

series Z% , converges if 0 < r < 1, by the comparison test.
Comparing these two series is inconclusive if r > 1.
Since it does not help to know that the terms of Z% are

smaller than those of the divergent series ), r™ . If r < 0, the
comparison test does not apply since the series then have
infinitely many negative terms.

B. Example

Since r™ < nr™ and Y r™if r > 1, the comparison test
implies that Y} nr™ = oo if r > 1 . Comparing these two
series is inconclusive if 0 < r < 1, since it does not help to
know that the terms of ) nr™ are larger than those of the
convergent series ), r™ .

The comparison test is useful if we have a collection of
series with nonnegative terms and known convergence
properties. We will now use the comparison test to build such
a collection [5].

C. Corollary
Suppose that a,, = 0 and b,, > 0 for n = k, and lim ? =

- n-oo by
L

Where 0 < L < c. Then Y a, and b, converge or
diverge together.[14]

Vol 2| Issue 3 | July 2021



IV. POWER SERIES

A series having the form
g+ a;x + ax? 4+ - =¥ a,x" (3)

where ay, a,, a,, ... are constants, is called a power series in
x.1tis often convenient to abbreviate the series (3) as ), a,x™.

In general, a power series converges for |x| < R and
diverges for |x| > R, where the constant R is called the
radius of convergence of the series. For|x| = R, the series
may or may not converge.

The interval |x] < Ror—R < x <R, with possible
inclusion of endpoints, is called the interval of convergence
of the series. Although the ratio test is often successful in
obtaining this interval, it may fail and in such cases, other
tests may be used [9].

The two special cases R = 0 and R = oo can arise. In the
first case the series converges only for x = 0in the second
case it converges for all x,sometimes written—oo < x < oo,

When we speak about a convergent power series, we
assume, unless otherwise indicated, that R > 0 .Similar
remarks hold for a power series of the form (3), where x is
replaced by (x — a)[12] .

A. Example
Test for convergence:

14+2r4+r24+2r3 +1r* +2r5 + -

where
2 2 4
(a)r—g,(b)r— _5,(C)r—§
Here the ratio test is inapplicable, since % = 2|r| or
n

;lrl depending on whether n is odd or even However, using
the nth root test, we have:

n V2| = V2 |r| if nis odd
lu,| = n e
V|r®| = |r|if nis even

1
Then lim /|u,| = || (since lim 27 = 1).
n—-oo n—-oo
Thus, if |r| < 1 the series converges, and if |r| > 1 the

series diverges. Hence, the series converges for cases (a) and
(b) and diverges in case (c) [15].

B. Expansion of Functions in Power Series

Here we get at the heart of the use of infinite series in
analysis.

Functions are represented through them. Certain forms
bear the names of mathematicians of the eighteenth and early
nineteenth century who did so much to develop these ideas.

A simple way (and one often used to gain information in
mathematics) to explore series representation of functions is
to assume such a representation exists and then discover the
details. of course, whatever is found must be confirmed in a
rigorous manner. Therefore, assume:

fxX)=Ap+ A (x—c)+A,(x — )2+ -+ A,(x—2)"
+ ves
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Notice that the coefficients A,can be identified with
derivatives of f. In particular:

1
Ay =f(c), A =f'(c),A; = zf”(C),...,An

1 n
= Ef (C),...

This suggests that a series representation of f is:

1
fE)=fO+ Q=)+ =)+

1
F— e = O

A first step in formalizing series representation of a
function, for which the first n derivatives exist, is
accomplished by introducing Taylor polynomials of the
function.

Po(x) = f(€), p1(x) = fe) + f'(e)(x = ©),
p2(x) = F() + f'(©)(x = ) + 2 f () (x = ©)?,

P =f+fOx—0)+ %f”(c)(x — )24t
~f(e)x — o)™ (@) [7].

V. EULER'S SUMMATION FORMULA AND ASYMPTOTIC
EXPANSIONS
A. The Summation Formula

The range of action of all the summation processes with
which we became acquainted. It is only when the terms a,, of
Y. a,, the divergent series under consideration, do not
increase too rapidly as n increases that we can sum the series.

Thus, in the case of the B-process, it is necessary that Y, %x”

. nllay| 1n
should be convergent everywhere, i.e., that |=—=or ~ Vlanl

should tend to zero. Hence the B-process cannot be used e.
g. for the series:

Z(—l)"n! =1—11421 =314+ 4 =5l + - 4 (—1)"n!
n=0

Series like this one, and even more rapidly divergent
series, occurred, however, in early investigations of the most
varied kind. In order to deal conclusively with them by the
methods used hitherto, we should have to introduce still more
powerful processes, such as the B,.-process. However, no
essential results have been obtained in this way.

At a fairly early stage in the development of the subject
other methods were indicated, which in certain cases lead
more conveniently to results useful both in theory and in
practice. In the case of the numerical evaluation of the sum
of an alternating series).(—1)"a,,,

in which the a,'s constitute a positive monotone null
sequence, we observed that the remainder r,, always has the
same sign as the first term neglected, and, moreover, that it
is less than this term in absolute value [2].
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Thus, in the calculation of the partial sums we need only
continue until the terms have decreased down to the required
degree of accuracy. A somewhat similar state of affairs exists
in the case of the series:

2 3 n

x
X =1 e (=Dt e 0,
e x+2 3+ +(-1) n!+ x>

n
Since the terms ’;—, likewise decrease monotone when n >
x. we can therefore write

. x2 3 11xn
e =1—-—x +'7Z'—'7§'+"'+‘(—'1) ;;i
(n+1)!
+ (_1)n+119 x(n+1)

For every n > x, where 9 of stands for a value between 0
and 1, depending on x and n, but is otherwise undetermined.
It is impossible in practice, however, actually to calculate
e™* from this formula when x is large, for e.g. whenx =

3000
1000, the thousandth term is equal to 1100W As 1000! is a

number with 2568 digits, the term under consideration is
greater than10*31, so that the evaluation of the sum of the
series cannot be carried out in practice. From the theoretical
point of view, on the other hand, the series fulfills all
requirements, since its terms, which (for large values of x) at
first increase very rapidly, never the fewer ends by
decreasing to zero, and that for every value of x. Hence any
degree of accuracy whatever can be obtained in theory.

The circumstances are exactly the reverse, if we know that
the value of a function f(x) is represented by the formula:

1Yy AR _ 3Ly (=X
f@=1-—+5-—S+-+ED" 0+
n+1)!

(_1)n+1 AnT)

x(n+1) !

n

for every n. the series Y.(—1)" et whose partial sums appear

in this formula, diverges for every x: but in contrast to nearly
all the divergent series met with in the last chapter, the terms
of the series (for large values of x) at first decrease very
rapidly - the series at first behaves like a convergent one -
and it is only later on that they increase rapidly and without
limit. Hence, we can calculate e. g. £(1000) to about ten
decimal places with great case; we have only to find an n for

which -2DL < 110-10 | A this s true even for n = 3, the
1000 2

value sought is given by:

1 N 2 6
103 106 10°

to the desired degree of accuracy. Thus, it happens here that
an expansion in powers, which takes the form of an infinite
series which is divergent everywhere and very rapidly, so,
nevertheless yields useful numerical results, because it
appears along with its remainder. We are not in a position,
however, - not even in theory - to obtain any degree of
accuracy what- ever in the evaluation of f(x), since f(x) is
given by its expansion only with an error of the order of one
of the terms of the series. The degree of accuracy therefore
cannot be lowered below the value of the least term of the
series. (A least term certainly exists, seeing that the terms
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finally increase) As the example shows, however, in suitable
circumstances all practical requirements may be satisfied.

Series of the type described were produced for the first
time by Euler's summation formula, which we shall now
consider more closely [2].

If the terms ay, a4, a,, ... a,, ...Of a series are the values of
a function f(x) forx =0,1,2,..,n,.., we have already
proved by the integral test that in certain circumstances there
is a relation between the partial sums s, = aq +a; + a, +
-+ ayand the integrals:

Jn= [y FO)dx .

Euler's summation formula throws further light on this
relation. If f(x) possesses a continuous differential
coefficient in 0 < x < n, then, for:

LUH (x —v - %) f'(x)dx

=<@—v—9fu0?1

— fvvﬂf(x)dx

Now, for each of the values v, we can put v = (x) in the
integrand on the left, at least for v < x < v+ 1. Since,
however, the one value x = v + 1 does not matter, we get:

2ot forn) = [ f@dx+ [ (x - [ -

%) f'()dx .

(To simplify the writing, we denote by f, and f,,(k)
respectively the values of f(x) and of its derivative f ) (x)
for integral values x = v) Adding these relations for the
relevant values of v, and adjoining the term s (f, + f,), we
finally obtain the formula.

fotfit ot fo= [ F@dx+3(f+f)+ ) (x—
[x] - ) £ (x)dx (5)

This in fact is Euler's summation formula in its simplest
form. It gives a closed expression for the difference between
the sums fo+fi+--+f, and the corresponding
integral f: f(x)dx.

We denote the function which appears in the last integrand
by P, (x):

1
P =x-[x-3

This is essentially the same function as the one which we
met with in one of the first examples of Fourier expansions.

It is periodic, with period 1, and for every non-integral
value of x we have

sin 2nmx

Pi(x) = = X5

nm
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A simple example to begin with will illustrate the
importance of this formula. If f(x) = i we obtain, by
replacingn byn — 1,

logn + +—— fnpl(x)d

Lot =

n-1 Pl(x)
+x)2'

We may substitute the latter integral for [ since

Pi(x+1) =P (x).
As piP; (x), is bounded inx > 1, the integral obviously
converges when n — oo, and we find that

. 1 1 _ .1 e
lim (1+§+-~-+E—logn)—c—§—f1 x—zdx

n—-oo

We already know that this limit exists, so we have a new
proof of this fact, in addition to we have an expression in the
form of an integral for Euler's constant ¢, by means of which
we can evaluate the constant numerically. From the formula
(6) i.e.

fotfot ot fa= fy FOdx+5(fo + f) +
Jo Py (0)dx (6)

Integration by parts leads to more advantageous
representations. In order to be in a position to carry it out, we
must first assume that f (x) has continuous derivatives of all
the orders which occur in what follows; then we have to
select an indefinite integral of P, (x), and an integral of the
latter, and so on. By suitable choice of the constants of
integration the further calculations are greatly simplified. We
shall follow wringers and set:

2 cos 2nmx
(2nm)3 °

Py(x) =+ X0

Then P’,(x) = P,(x), for every non-integral value of x,

1 oo 1 .
and P,(0) = ﬁznzlﬁ =5 Moreover, P,(x) is
continuous throughout and has the period 1. We now proceed
to set:

2 sin 2nmx
(2nm)3

Py(x) = +Xn-

Whence we have P';(x) = P,(x), for every value of x,
P;(0) = 0, and in general:

2 cos 2nmx

(2nm)24 7
_ -1 2sin2nmx’ (7)
Py = (—1) Z"=1W

Py, = (_1)/1_1 Y=t

Then, for 4 = 1,2,3, ..., all these functions are throughout
continuous and continuously differentiable, and have the
period 1; and we have:

P'ri1(x) = Pr(x)

1w 2 B21
Pa(0) = (D B G =

o P (0) = 0

(8)
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B (2) .
fork,1=1,2,..(3%, Zp_( 1)p-1 2;’(2”), (p fixed)).

As is immediately obvious from the proof.
In the interval 0 < x <1 and for k = 2, the functions
P, (x) are rational integral functions. Besides the fact that

Pl(x)zx—%in0<x<1,
we have, in0 < x <1,

2 2
P =T -fr=Teh ek
_x3 x? x_x3 By x? By x
B =F-Tre=atuatan
PyGx) = 4 x3+x2 1 —X4+Bl x3 Bzx2+B4
R VR TR VIR T TR TR TR TIC TR

Hence in general, as may immediately be established by
induction:

k Bl xk—l BZ x(k—Z) N Bk

T TRy TR TN e TR

%(('5) o (3t () 4
* <k ﬁ 1)Bk‘1(x) * (D B")

(©) P (x) = 1; (x + B,

Or

If we employ the symbolic notation already used. These
are the so-called Bernoulli's polynomials, which play an
important part in many investigations. We shall meet with
some of their important properties directly.

First of all, however, we shall improve the formula by
means of these polynomials. Integration by parts gives:

7 PLGOf (dx = (Pof )2 Z(f'n—

o) = (Paf )5 + [y Py f7dx

B, "
=22 fo)+jP3f dx

—Jy P fdx =

And, generally,

n
f P21—1f(21_1)dx
0

_ Ba ( @A-1) _
2!

n
+ f P2/1+1f(2/1+1) dx
0

0(2/1—1))

for 1 = 1. Hence, for every k = 0, provided only that the
derivatives of f(x) involved exist and are continuous, we can
write:

fot fit o+ fo= Iy FOAx +5 (ot fo) + 2 (f -
)+ = 1)+ -+ G (f FED ) gy
)
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Where we put:
n
Ri= [ Pacea @) FE ()dx
0

This is Euler's summation formula [2].

Some Applications:

1. It is obvious that the most favorable results are
obtained when. the higher derivatives of f (x) are very
small, and especially when they vanish. We therefore
first choosef (x) = x*, where p is an integer > 1,and
we have:

2.

17 + 27 + 3P 4o P = [MxPdx +-nf +

ZpnPt 4 (10)
Here the series on the right hand side is to be broken off at
the last positive power of n, for (f,; (k) fo(k)) vanishes not
only when £ (x) = 0, but also when f®(x) is identically
equal to a non-vanishing constant.
Thus, by transferring n” to the right hand side we have:

P+2P+ 4+ (m—-1DF =
(73 )Bn™ 4 ),

Pil( P14 (PP +

or - since there is no constant term appearing inside the
brackets on the right hand side:

1P+2P++(n—-1DF = — BP*Y)

BP+1
pr1(+B)

2. The sums dealt with the above can be obtained in quite

a different way. If we
imagine that each term of the sum:

1+el+e2t +. et
P
is expanded in powers of t, the coefficient of ;_1 is obviously

1P +2P ++(n—-1)F

On the other hand, if we use symbolic notation, the first
sum is equal to:

ent_q _ ent e(n+B)t eBt

-1
g @Bt =
et-1 t t

Hence, we immediately obtain the expression

((n + B)P+1 _ BP+1)

P+1

P
For the coefficient of ;—‘.

3. Ifweput f(x) =e
4,

,n =1, we obtain:

k
“—-1 B,

4 (Zv)| a2v—1(ea _ 1)

1 . e
E(e + 1) =
1
+ az"“f Pyesr () e*dx
0
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Or

a

e*—1
a2k+2

f Pyp1(x) e®

a B
-5tk L +

=1 2!

Since we can immediately prove, that the remainder tends
to zero in this case, provided only that |a| < 27, we have,
for these values of «,

[ee]
a a B,,

BA
=1__ 2v _ )L
e —1

2 © £ ,1'

v=1

Similarly, by putting f (x) = cos ax ,n = 1, we obtain the
expansion for % cot% .

5. If we put f(x) = ﬁ we have, by replacing n by

(n—-1),

1 + 1 4 B, (1 1)
2 2n 2 n?
2B <1 ! ) +

4 nt)

L2 (1) - 2k + 1) [ P2 gy

2k 2k+2

1 1
14+ 4==
n

> logn + =

Since here we may let n — oo, we obtain the following
refined expression for Euler's constant:

(Zk + 1)|J'°°P2k+1(x)d

2k+2

C:l.{.&_}.ﬁ.}.....}.B
2 2 4 2k

In this case the remainder certainly does not decrease to 0
as k increases; and the series Z% diverges rapidly, so

rapidly that even the corresponding power series Z%xz"
diverges everywhere; for, by

Bap(2m)2P .
Sy = (G IS (p fixed),
|Bo| = 2(2]()'17Where1<r;<2

2 )Zk

Nevertheless, we can evaluate ¢ very accurately by means
of the above expression. If we take e. g. k = 3, we have, in
the first instance.

1

—_ - - | OOP7(X)
(@c + 120+ =7 f dx.

If we take only the part of the integral from x = 1to x =
4, the absolute value of the error is:

4 o dx
< 7l— =
< 7.(2707[4 =

Hence,
1459 4P, (x) n
2520 fl PRI
where
In] < 1.
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The required evaluation of the integral is also given by the
first formula written down, for n = 4, namely:

—7!f14p7(:)dx=1+l+3+l—log4—isg—i+
) E ) 273 4 2520 2.4

—_———t+—
1242 1204% 25246

Hence,
0.5772146 < ¢ < 0.5772168.

In this way we can easily obtain ¢ with much greater
accuracy than before, and theoretically to any degree of
accuracy whatever. The reason for this favorable state of
affairs lies solely in the fact that we may regard the
logarithms as known.

VI. RESULTS

The paper dealt with the infinite series and some
applications to Euler's summation, and we took the model
study (Euler's summation) and we came to the results of
which is access to the relationship through the Euler's
summation and we focused on the physical link questioner to
make the study as an application for Euler's summation so it
can be the beginning of advanced study in concept of the
infinite series and its applications to Euler's summation.
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