
    EJ-MATH, European Journal of Mathematics and Statistics 

ISSN: 2736-5484 

 

DOI: http://dx.doi.org/10.24018/ejmath.2021.2.3.32   Vol 2 | Issue 3 | July 2021 25 

 

On Infinite Series and with Their Some Applications to 

Euler's Summation Formula 

 
Abdel Radi Abdel Rahman Abdel Gadir Abdel Rahman, Neama Yahia Mohammed, 

Subhi Abdalazim Aljily, and Nidal Elamen Mohammed Ali 

 

Abstract — Infinite series is still used in engineering, 

mathematical and physical sciences.In the modern area a great 

progress is made in the sciences of calculus in addition to what 

was accompanied by advances in infinite series and their some 

applications .The aims of this paper is to develop and introduces 

the infinite series and their some applications to Euler's 

summation , also we show and explain how to apply the infinite 

series in Euler's summation .We followed the induction 

mathematical method and found that : The relationship 

through the Euler's summation focused on the physical link 

questioner to make the study as an application for Euler's 

summation so it can be the beginning of advanced study in 

concept of the infinite series and their some applications to 

Euler's summation. 

 

Index Terms — Applications, Euler's Summation Formula, 

Infinite Series. 

 

I. INTRODUCTION1 

In this study, we deal with an infinite series and some 

applications to Euler's summation and asymptotic 

expansions. Firstly, we spoke about the sequences, then we 

dealt with the derivatives, after that we explained different 

concepts which related to infinite series, finally we discuss 

the vectors and applied Euler's summation formula and 

asymptotic expansions to infinite series. 

 

II. THE INFINITE SERIES 

A. Definition 

If {𝑎𝑛}𝑘
∞ is an infinite sequence of real numbers, the 

symbol ∑ 𝑎𝑛
∞
𝑛=𝑘  is an infinite series, and 𝑎𝑛 is the 𝑛th term 

of the series. We say that∑ 𝑎𝑛
∞
𝑛=𝑘 is converges to the sum 𝐴, 

and write ∑ 𝑎𝑛
∞
𝑛=𝑘 = 𝐴 [4] if the sequence {𝐴𝑛}𝑘

∞ defined by: 

 

𝐴𝑛 = 𝑎𝐾 + 𝑎𝐾+1 … … . . . +𝑎𝑛, 𝑛 ≥ 𝑘 ; 

 

converges to 𝐴. 

The finite sum 𝐴𝑛 is the 𝑛th partial sum of ∑ 𝑎𝑛
∞
𝑛=𝑘 . If 

{𝐴𝑛}𝑘
∞ diverges, we say that{𝐴𝑛}𝑘

∞diverges; in particular, if 

lim
𝑛→∞

𝐴𝑛 = ∞ or −∞, we say that ∑ 𝑎𝑛
∞
𝑛=𝑘 = ∞ diverges to 

∞ or −∞, and write ∑ 𝑎𝑛
∞
𝑛=𝑘 = ∞ or ∑ 𝑎𝑛

∞
𝑛=𝑘 = −∞. 

A divergent infinite series that does not diverge to ±∞ is 

said to oscillate or be oscillatory. 

We usually refer to infinite series more briefly as series. 

[17]. 
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B. Example 

Consider the series ∑ 𝑟𝑛∞
𝑛=0 , −1 <  𝑟 <  1. 

Here 𝑎𝑛 = 𝑟𝑛 .(𝑛 > 0) and 

 

𝐴𝑛 = 1 + 𝑟 + 𝑟2 +  … … + 𝑟𝑛 =
1−𝑟𝑛+1

1−𝑟
    (1) 

 

which converges to 
1

1−𝑟
 as 𝑛 → ∞; thus, we write: 

 

∑ 𝑟𝑛
∞
𝑛=0 =

1

1−𝑟
 , −1 <  𝑟 <  1 if |𝑟| > 1  

 

then (1) is still valid, but ∑ 𝑟𝑛
∞
𝑛=0  Diverges, if 𝑟 > 1, then 

 
∑ 𝑟𝑛

∞
𝑛=0 = ∞      (2) 

 

If 𝑟 < 1, ∑ 𝑟𝑛
∞
𝑛=0  oscillates, since its partial sums alternate 

in sign and their magnitudes become arbitrarily large for 

large 𝑛. If 𝑟 = −1, then 𝐴2𝑚+1 = 0 and 𝐴2𝑚 = 1 for 𝑚 ≥
0, while if 𝑟 = 1, 𝐴𝑛 =  𝑛 + 1; in both cases the series 

diverges, and (2) holds or 𝑟 = 1 [1]. 

The series ∑ 𝑟𝑛
∞
𝑛=0  is called the geometric series with ratio. 

It occurs in many applications. An infinite series can be 

viewed as a generalization of a finite sum 

 

𝐴 = ∑ 𝑎𝑛

𝑁

𝑛=𝑘

= 𝑎𝐾 + 𝑎𝐾+1 … … . . . +𝑎𝑁 

 

By thinking of the finite sequence {𝑎𝐾 , 𝑎𝐾+1, … , 𝑎𝑁} as 

being extended to an infinite sequence {𝑎𝑛}𝑘
∞ , with 𝑎𝑛 = 0 

for 𝑛 > 𝑁. Then the partial sums of ∑ 𝑎𝑛
∞
𝑛=𝑘  are: 

 

𝐴𝑛  = 𝑎𝐾 + 𝑎𝐾+1 … … . . . +𝑎𝑛,𝑘 ≤ 𝑛 < 𝑁, 

 

And 

 

𝐴𝑛  = 𝐴, 𝑛 ≥ 𝑁 [6]. 

 

That is, the terms of {𝑎𝑛}𝑘
∞ equal the finite sum 𝐴 for 𝑛 ≥

𝑘. Therefore, lim
𝑛→∞

𝐴𝑛 = 𝐴. 

C. Theorem 

𝐿𝑒𝑡 ∑ 𝑎𝑛
∞
𝑛=𝑘 = 𝐴 and ∑ 𝑏𝑛

∞
𝑛=𝑘 = 𝐵 where 𝐴 and 𝐵 are 

finites: Then ∑ 𝑐𝑎𝑛
∞
𝑛=𝑘 = 𝑐𝐴 , 𝑐 is a constant. 
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∑ (𝑎𝑛 + 𝑏𝑛)∞
𝑛=𝑘 = 𝐴 + 𝐵 and ∑ (𝑎𝑛 − 𝑏𝑛)∞

𝑛=𝑘 = 𝐴 − 𝐵 

[11]. 

 

These relations also hold if one or both of 𝐴 and 𝐵 is 

infinite, provided that the right sides are not indeterminate: 

Dropping finitely many terms from a series does not alter 

convergence or divergence, although it does change the sum 

of a convergent series if the terms dropped have a nonzero 

sum. For example, suppose that we drop the first 𝑘 terms of 

a series ∑ 𝑎𝑛
∞
𝑛=0  an, and consider the new series ∑ 𝑎𝑛

∞
𝑛=𝑘 . 

Denote the partial sums of the two series by: 

 

𝐴𝑛  = 𝑎0 + 𝑎1 + ⋯ . . . +𝑎𝑛, 𝑛 ≥ 0 

 

And 

 

𝐴𝑛
′  = 𝑎𝐾 + 𝑎𝐾+1 … … . . . +𝑎𝑛, 𝑛 ≥ 𝑘. 

 

Since 

 

𝐴𝑛  = (𝑎0 + 𝑎1 + ⋯ . . . +𝑎𝑘−1) + 𝐴𝑛
′  , 𝑛 ≥ 𝑘, 

 

It follows that 𝐴 = lim
𝑛→∞

𝐴𝑛 exists (in the extended reals) if 

and only if: 

 

𝐴′ = lim
𝑛→∞

𝐴𝑛
′  does, and in this case 

 

𝐴 = (𝑎0 + 𝑎1 + ⋯ . . . +𝑎𝑘−1) + 𝐴′ [16]. 

 

D. Lemma 

Suppose that for 𝑛 sufficiently large (that is, for 𝑛 ≥some 

integer 𝑁). 

The terms of ∑ 𝑎𝑛
∞
𝑛=𝑘  satisfy some condition that implies 

convergence of an infinite series. Then ∑ 𝑎𝑛
∞
𝑛=𝑘  converges: 

Similarly, suppose that for n sufficiently large the terms 
∑ 𝑎𝑛

∞
𝑛=𝑘  satisfy some condition that implies divergence of an 

infinite series: Then ∑ 𝑎𝑛
∞
𝑛=𝑘  diverges. 

E. Example 

Consider the alternating series test, which we will 

establish later as a special case of a more general test: 

The series ∑ 𝑎𝑛
∞
𝑛=𝑘  converges if (−1)𝑛𝑎𝑛 > 0 , 

 
|𝑎𝑛+1| < |𝑎𝑛|, and lim

𝑛→∞
𝑎𝑛 = 0 

 

The terms of 

∑
16 + (−2)𝑛

𝑛2𝑛

∞

𝑛=1

 

 

Do not satisfy these conditions for all 𝑛 ≥ 1, but they do 

satisfy them for sufficiently large 𝑛. Hence, the series 

converges, by Lemma. 

We will soon give several conditions concerning 

convergence of a series ∑ 𝑎𝑛
∞
𝑛=𝑘  with nonnegative terms. 

According to Lemma, these results apply to series that have 

at most finitely many negative terms, as long as 𝑎𝑛 is 

nonnegative and satisfies the conditions for n sufficiently 

large. 

When we are interested only in whether ∑ 𝑎𝑛
∞
𝑛=𝑘  

converges or diverges and not in its sum, we simply say 

“∑ 𝑎𝑛 converges” or “∑ 𝑎𝑛 diverges.” Lemma (5-1) justifies 

this convention, subject to the understanding that∑ 𝑎𝑛stands 

for ∑ 𝑎𝑛
∞
𝑛=𝑘 , where 𝑘 is an integer such that 𝑎𝑛 is defined for 

𝑛 ≥  𝑘. (For example, ∑
1

(𝑛−6)2 stands for ∑
1

(𝑛−6)2
∞
𝑛=𝑘  where 

𝑘 ≥ 7.) We write ∑ 𝑎𝑛 = ∞ (−∞) If ∑ 𝑎𝑛  diverges to 

∞ (−∞)finally, let us agree that ∑ 𝑎𝑛
∞
𝑛=𝑘  and ∑ 𝑎𝑛+𝑗

∞
𝑛=𝑘−𝑗  . 

(Where we obtain the second expression by shifting the 

index in the first) both represent the same series. [3] 

F. Corollary 

If ∑ 𝑎𝑛 converges; then lim
𝑛→∞

𝑎𝑛 = 0.It must be 

emphasized that Corollary (2.6) gives a necessary condition 

for convergence; that is ∑ 𝑎𝑛 cannot converge unless 

lim
𝑛→∞

𝑎𝑛 = 0 .The condition is not sufficient; ∑ 𝑎𝑛 may 

diverge even if lim
𝑛→∞

𝑎𝑛 = 0. We will see examples below 

[13].  

G. Corollary 

If ∑ 𝑎𝑛 converges; then for each 𝜖 > 0 there is an integer 

𝐾 such that 

 
| ∑ 𝑎𝑛

∞
𝑛=𝑘  | <∈ if 𝑘 ≥ 𝐾 

 

That is, 

 

lim
𝑘→∞

 ∑ 𝑎𝑛
∞
𝑛=𝑘 = 0 [10].  

 

III. SERIES OF NONNEGATIVE TERMS 

The theory of series∑ 𝑎𝑛 with terms that are nonnegative 

for sufficiently large 𝑛 is simpler than the general theory, 

since such a series either converges to a finite limit or 

diverges to ∞, as the next theorem shows [8].  

A. Example 

Since 
𝑟𝑛

𝑛
< 𝑟n, 𝑛 ≥ 1, and ∑ 𝑟𝑛 < ∞ if 0 <  𝑟 < 1, the 

series ∑
𝑟𝑛

𝑛
 , converges if 0 < 𝑟 < 1, by the comparison test. 

Comparing these two series is inconclusive if 𝑟 > 1. 

Since it does not help to know that the terms of ∑
𝑟𝑛

𝑛
 are 

smaller than those of the divergent series ∑ 𝑟𝑛 . If 𝑟 <  0, the 

comparison test does not apply since the series then have 

infinitely many negative terms. 

B. Example 

Since 𝑟𝑛 < 𝑛𝑟𝑛 and ∑ 𝑟𝑛 if 𝑟 ≥ 1, the comparison test 

implies that ∑ 𝑛𝑟𝑛 = ∞ if 𝑟 ≥ 1 . Comparing these two 

series is inconclusive if 0 <  𝑟 < 1, since it does not help to 

know that the terms of ∑ 𝑛𝑟𝑛 are larger than those of the 

convergent series ∑ 𝑟𝑛 . 

The comparison test is useful if we have a collection of 

series with nonnegative terms and known convergence 

properties. We will now use the comparison test to build such 

a collection [5].  

C. Corollary 

Suppose that 𝑎𝑛 ≥ 0 and 𝑏𝑛 > 0 for 𝑛 ≥ 𝑘, and lim
𝑛→∞

𝑎𝑛

𝑏𝑛
=

𝐿. 
Where 0 < 𝐿 < ∞. Then ∑ 𝑎𝑛 and ∑ 𝑏𝑛 converge or 

diverge together.[14] 
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IV. POWER SERIES 

A series having the form 

 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0    (3) 

 

where 𝑎0, 𝑎1, 𝑎2, … are constants, is called a power series in 

𝑥.Itis often convenient to abbreviate the series (3) as ∑ 𝑎𝑛𝑥𝑛. 

In general, a power series converges for |𝑥| < 𝑅 and 

diverges for |𝑥| > 𝑅, where the constant 𝑅 is called the 

radius of convergence of the series. For|𝑥| = R, the series 

may or may not converge. 

The interval |𝑥| < 𝑅 or−𝑅 < 𝑥 < 𝑅, with possible 

inclusion of endpoints, is called the interval of convergence 

of the series. Although the ratio test is often successful in 

obtaining this interval, it may fail and in such cases, other 

tests may be used [9]. 

The two special cases 𝑅 = 0 and 𝑅 = ∞ can arise. In the 

first case the series converges only for 𝑥 = 0in the second 

case it converges for all 𝑥,sometimes written−∞ < 𝑥 < ∞ . 

When we speak about a convergent power series, we 

assume, unless otherwise indicated, that 𝑅 > 0 .Similar 

remarks hold for a power series of the form (3), where 𝑥 is 

replaced by (𝑥 − 𝑎)[12] .  

A. Example 

Test for convergence: 

 

 1 + 2𝑟 + 𝑟2 + 2𝑟3 + 𝑟4 + 2𝑟5 + ⋯  

 

where 

(a) 𝑟 =
2

3
 , (b) 𝑟 = −

2

3
 , (c) 𝑟 =

4

3
 . 

 

Here the ratio test is inapplicable, since |
𝑢𝑛+1

𝑢𝑛
| = 2|𝑟| or 

1

2
|𝑟| depending on whether n is odd or even However, using 

the nth root test, we have: 

 

√|𝑢𝑛|
𝑛

= {
√2|𝑟𝑛|
𝑛

= √2
𝑛

 |𝑟| if 𝑛 is odd

√|𝑟𝑛|
𝑛

= |𝑟| if 𝑛 is even
 

 

Then lim
𝑛→∞

√|𝑢𝑛|𝑛
= |𝑟| (since lim

𝑛→∞
2

1

𝑛 = 1). 

Thus, if |𝑟 | < 1 the series converges, and if |𝑟| > 1 the 

series diverges. Hence, the series converges for cases (a) and 

(b) and diverges in case (c) [15].  

B. Expansion of Functions in Power Series 

Here we get at the heart of the use of infinite series in 

analysis. 

Functions are represented through them. Certain forms 

bear the names of mathematicians of the eighteenth and early 

nineteenth century who did so much to develop these ideas. 

A simple way (and one often used to gain information in 

mathematics) to explore series representation of functions is 

to assume such a representation exists and then discover the 

details. of course, whatever is found must be confirmed in a 

rigorous manner. Therefore, assume: 

 

𝑓(𝑥) = 𝐴0 + 𝐴1(𝑥 − 𝑐) + 𝐴2(𝑥 − 𝑐)2 + ⋯ + 𝐴𝑛(𝑥 − 2)𝑛

+ ⋯ 

 

Notice that the coefficients 𝐴𝑛can be identified with 

derivatives of 𝑓. In particular: 

 

𝐴0 = 𝑓(𝑐), 𝐴1 = 𝑓′(𝑐), 𝐴2 =
1

2!
𝑓′′(𝑐), . . . , 𝐴𝑛

=
1

𝑛!
𝑓𝑛(𝑐), … 

 

This suggests that a series representation of 𝑓 is: 

 

𝑓(𝑥) = 𝑓(𝑐) + 𝑓′(𝑐)(𝑥 − 𝑐) +
1

2!
𝑓′′(𝑐)(𝑥 − 𝑐)2 + ⋯

+
1

𝑛!
𝑓𝑛(𝑐)(𝑥 − 𝑐)𝑛 + ⋯ 

 

A first step in formalizing series representation of a 

function, for which the first n derivatives exist, is 

accomplished by introducing Taylor polynomials of the 

function. 

 

𝑝0(𝑥) = 𝑓(𝑐), 𝑝1(𝑥) = 𝑓(𝑐) + 𝑓′(𝑐)(𝑥 − 𝑐), 

 

𝑝2(𝑥) = 𝑓(𝑐) + 𝑓′(𝑐)(𝑥 − 𝑐) +
1

2!
𝑓′′(𝑐)(𝑥 − 𝑐)2, 

 

𝑝𝑛(𝑥) = 𝑓(𝑐) + 𝑓′(𝑐)(𝑥 − 𝑐) +
1

2!
𝑓′′(𝑐)(𝑥 − 𝑐)2 + ⋯ +

1

𝑛!
𝑓𝑛(𝑐)(𝑥 − 𝑐)𝑛 . (4) [7]. 

 

V. EULER'S SUMMATION FORMULA AND ASYMPTOTIC 

EXPANSIONS 

A. The Summation Formula 

The range of action of all the summation processes with 

which we became acquainted. It is only when the terms 𝑎𝑛 of 
∑ 𝑎𝑛, the divergent series under consideration, do not 

increase too rapidly as 𝑛 increases that we can sum the series. 

Thus, in the case of the 𝐵-process, it is necessary that ∑
𝑎𝑛

𝑛!
𝑥𝑛 

should be convergent everywhere, i.e., that √
|𝑎𝑛|

𝑛!

𝑛
 or 

1

𝑛
√|𝑎𝑛|𝑛

 

should tend to zero. Hence the 𝐵-process cannot be used e. 

g. for the series: 

 

∑(−1)𝑛

∞

𝑛=0

𝑛! = 1 − 1! + 2! − 3! + 4! − 5! + ⋯ + (−1)𝑛𝑛!

+ ⋯ 

 

Series like this one, and even more rapidly divergent 

series, occurred, however, in early investigations of the most 

varied kind. In order to deal conclusively with them by the 

methods used hitherto, we should have to introduce still more 

powerful processes, such as the 𝐵𝑟-process. However, no 

essential results have been obtained in this way. 

At a fairly early stage in the development of the subject 

other methods were indicated, which in certain cases lead 

more conveniently to results useful both in theory and in 

practice. In the case of the numerical evaluation of the sum 

of an alternating series∑(−1)𝑛𝑎𝑛, 

in which the 𝑎𝑛 's constitute a positive monotone null 

sequence, we observed that the remainder 𝑟𝑛, always has the 

same sign as the first term neglected, and, moreover, that it 

is less than this term in absolute value [2].  
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Thus, in the calculation of the partial sums we need only 

continue until the terms have decreased down to the required 

degree of accuracy. A somewhat similar state of affairs exists 

in the case of the series: 

 

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2
−

𝑥3

3
+ ⋯ + (−1)𝑛

𝑥𝑛

𝑛!
+ ⋯ , 𝑥 > 0, 

 

Since the terms 
𝑥𝑛

𝑛!
 likewise decrease monotone when  𝑛 >

𝑥. we can therefore write 

 

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2
−

𝑥3

3
+ ⋯ + (−1)𝑛

𝑥𝑛

𝑛!

+ (−1)𝑛+1𝜗
(𝑛 + 1)!

𝑥(𝑛+1)
 

 

For every 𝑛 > 𝑥, where 𝜗 of stands for a value between 0 

and 1, depending on 𝑥 and 𝑛, but is otherwise undetermined. 

It is impossible in practice, however, actually to calculate 

𝑒−𝑥 from this formula when 𝑥 is large, for e.g. when 𝑥 =

 1000, the thousandth term is equal to 
103000

1000!
 .As 1000! is a 

number with 2568 digits, the term under consideration is 

greater than10431, so that the evaluation of the sum of the 

series cannot be carried out in practice. From the theoretical 

point of view, on the other hand, the series fulfills all 

requirements, since its terms, which (for large values of 𝑥) at 

first increase very rapidly, never the fewer ends by 

decreasing to zero, and that for every value of 𝑥. Hence any 

degree of accuracy whatever can be obtained in theory. 

The circumstances are exactly the reverse, if we know that 

the value of a function 𝑓(𝑥) is represented by the formula: 

 

𝑓(𝑥) = 1 −
1!

𝑥
+

2!

𝑥2 −
3!

𝑥3 + ⋯ + (−1)𝑛 𝑛!

𝑥𝑛 +

(−1)𝑛+1 (𝑛+1)!

𝑥(𝑛+1) , 

 

for every 𝑛. the series ∑(−1)𝑛 𝑛!

𝑥𝑛 , whose partial sums appear 

in this formula, diverges for every 𝑥: but in contrast to nearly 

all the divergent series met with in the last chapter, the terms 

of the series (for large values of 𝑥) at first decrease very 

rapidly - the series at first behaves like a convergent one - 

and it is only later on that they increase rapidly and without 

limit. Hence, we can calculate e. g. 𝑓(1000) to about ten 

decimal places with great case; we have only to find an n for 

which 
(𝑛+1)!

1000𝑛+1 <
1

2
10−10 . As this is true even for 𝑛 = 3, the 

value sought is given by: 

 

1 −
1

103
+

2

106
−

6

109
 

 

to the desired degree of accuracy. Thus, it happens here that 

an expansion in powers, which takes the form of an infinite 

series which is divergent everywhere and very rapidly, so, 

nevertheless yields useful numerical results, because it 

appears along with its remainder. We are not in a position, 

however, - not even in theory - to obtain any degree of 

accuracy what- ever in the evaluation of 𝑓(𝑥), since 𝑓(𝑥) is 

given by its expansion only with an error of the order of one 

of the terms of the series. The degree of accuracy therefore 

cannot be lowered below the value of the least term of the 

series. (A least term certainly exists, seeing that the terms 

finally increase) As the example shows, however, in suitable 

circumstances all practical requirements may be satisfied. 

Series of the type described were produced for the first 

time by Euler's summation formula, which we shall now 

consider more closely [2].  

If the terms 𝑎0, 𝑎1, 𝑎2, … 𝑎𝑛, …of a series are the values of 

a function 𝑓(𝑥) for 𝑥 = 0,1,2, … , 𝑛, …, we have already 

proved by the integral test that in certain circumstances there 

is a relation between the partial sums 𝑠𝑛 = 𝑎0 + 𝑎1 + 𝑎2 +
⋯ + 𝑎𝑛and the integrals: 

 

𝐽𝑛 = ∫ 𝑓(𝑥)
𝑛

0
𝑑𝑥 . 

 

Euler's summation formula throws further light on this 

relation. If 𝑓(𝑥) possesses a continuous differential 

coefficient in 0 ≤ 𝑥 ≤ 𝑛, then, for: 

 

𝑣 = 0,1, … , 𝑛 − 1, 

 

∫ (𝑥 − 𝑣 −
1

2
) 𝑓΄(𝑥)𝑑𝑥

𝑣+1

𝑣

 

= ((𝑥 − 𝑣 −
1

2
) 𝑓(𝑥))

𝑣

𝑣+1

− ∫ 𝑓(𝑥)𝑑𝑥
𝑣+1

𝑣

 

 

Now, for each of the values 𝑣, we can put 𝑣 =  (𝑥) in the 

integrand on the left, at least for 𝑣 ≤ 𝑥 < 𝑣 + 1. Since, 

however, the one value 𝑥 =  𝑣 + 1 does not matter, we get: 

 
1

2
(𝑓𝑣 + 𝑓𝑣+1) = ∫ 𝑓(𝑥)𝑑𝑥

𝑣+1

𝑣
+ ∫ (𝑥 − [𝑥] −

𝑣+1

𝑣
1

2
) 𝑓΄(𝑥)𝑑𝑥 . 

 

(To simplify the writing, we denote by 𝑓𝑣 and 𝑓𝑣
(𝑘)

 

respectively the values of 𝑓(𝑥) and of its derivative 𝑓 (𝑘)(𝑥) 

for integral values 𝑥 = 𝑣) Adding these relations for the 

relevant values of v, and adjoining the term s (𝑓0 + 𝑓𝑛), we 

finally obtain the formula. 

 

𝑓0 + 𝑓1 + ⋯ + 𝑓𝑛 =  ∫ 𝑓(𝑥)𝑑𝑥
𝑛

0
+

1

2
(𝑓0 + 𝑓𝑛) + ∫ (𝑥 −

𝑛

0

[𝑥] −
1

2
) 𝑓΄(𝑥)𝑑𝑥 (5) 

This in fact is Euler's summation formula in its simplest 

form. It gives a closed expression for the difference between 

the sums 𝑓0 + 𝑓1 + ⋯ + 𝑓𝑛 and the corresponding 

integral ∫ 𝑓(𝑥)𝑑𝑥
𝑛

0
. 

We denote the function which appears in the last integrand 

by 𝑃1(𝑥): 

 

𝑃1(𝑥) = 𝑥 − [𝑥] −
1

2
 

 

This is essentially the same function as the one which we 

met with in one of the first examples of Fourier expansions. 

It is periodic, with period 1, and for every non-integral 

value of 𝑥 we have 

 

𝑃1(𝑥) = − ∑
sin 2𝑛𝜋𝑥

𝑛𝜋

∞
𝑛=1 . 
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A simple example to begin with will illustrate the 

importance of this formula. If 𝑓(𝑥) =
1

1+𝑥
, we obtain, by 

replacing 𝑛 by 𝑛 − 1, 

 

1 +
1

2
+ ⋯ +

1

𝑛
= log 𝑛 +

1

2
+

1

2𝑛
− ∫

𝑝1(𝑥)

𝑥2

𝑛

1
𝑑𝑥. 

 

We may substitute the latter integral for ∫
𝑃1(𝑥)

(1+𝑥)2

𝑛−1

0
, since 

𝑃1(𝑥 + 1) = 𝑃1(𝑥). 

As pi𝑃1(𝑥), is bounded in 𝑥 > 1, the integral obviously 

converges when 𝑛 → ∞, and we find that 

 

lim
𝑛→∞

(1 +
1

2
+ ⋯ +

1

𝑛
− log 𝑛) = 𝑐 =

1

2
− ∫

𝑝1(𝑥)

𝑥2

∞

1

𝑑𝑥 

 

We already know that this limit exists, so we have a new 

proof of this fact, in addition to we have an expression in the 

form of an integral for Euler's constant 𝑐, by means of which 

we can evaluate the constant numerically. From the formula 

(6) i.e. 

 

𝑓0 + 𝑓1 + ⋯ + 𝑓𝑛 =  ∫ 𝑓(𝑥)𝑑𝑥
𝑛

0
+

1

2
(𝑓0 + 𝑓𝑛) +

∫ 𝑃1(𝑥)𝑓΄(𝑥)𝑑𝑥
𝑛

0
      (6) 

 

Integration by parts leads to more advantageous 

representations. In order to be in a position to carry it out, we 

must first assume that 𝑓 (𝑥) has continuous derivatives of all 

the orders which occur in what follows; then we have to 

select an indefinite integral of 𝑃1(𝑥), and an integral of the 

latter, and so on. By suitable choice of the constants of 

integration the further calculations are greatly simplified. We 

shall follow wringers and set: 

 

𝑃2(𝑥) = + ∑
2 cos 2𝑛𝜋𝑥

(2𝑛𝜋)3
∞
𝑛=1 . 

 

Then 𝑃′
2(𝑥)  = 𝑃1(𝑥), for every non-integral value of 𝑥, 

and 𝑃2(0) =
1

2𝜋2
∑

1

𝑛2
∞
𝑛=1 =

1

12
. Moreover, 𝑃2(𝑥) is 

continuous throughout and has the period 1. We now proceed 

to set: 

 

𝑃3(𝑥) = + ∑
2 sin 2𝑛𝜋𝑥

(2𝑛𝜋)3
∞
𝑛=1   

 

Whence we have 𝑃′
3(𝑥)  = 𝑃2(𝑥), for every value of 𝑥, 

𝑃3(0) = 0, and in general: 

 

{
𝑃2𝜆 = (−1)𝜆−1 ∑

2 cos 2𝑛𝜋𝑥

(2𝑛𝜋)2𝜆
∞
𝑛=1 ,

𝑃2𝜆+1 = (−1)𝜆−1 ∑
2 sin 2𝑛𝜋𝑥

(2𝑛𝜋)2𝜆+1
∞
𝑛=1

.   (7) 

 

Then, for 𝜆 = 1,2,3, … ., all these functions are throughout 

continuous and continuously differentiable, and have the 

period 1; and we have: 

 

{
𝑃΄𝑘+1(𝑥) = 𝑃𝑘(𝑥)

𝑃2𝜆(0) = (−1)𝜆−1 ∑
2

(2𝑛𝜋)2𝜆
∞
𝑛=1 =

𝐵2𝜆

(2𝜆)2𝑛 , 𝑃2𝜆+1(0) = 0
  

(8) 

 

for 𝑘, 𝜆 = 1, 2, … (∑
1

𝑛2𝑝
∞
𝑛=1 = (−1)𝑝−1 𝐵2𝑝(2𝜋)2𝑝

2(2𝑝)!
 (𝑝 fixed)). 

As is immediately obvious from the proof. 

In the interval 0 ≤  𝑥 ≤ 1 and for 𝑘 ≥  2, the functions 

𝑃𝑘  (𝑥) are rational integral functions. Besides the fact that 

𝑃1(𝑥) = 𝑥 −
1

2
 in 0 < 𝑥 < 1, 

we have, in 0 ≤  𝑥 ≤ 1, 

 

𝑃2(𝑥) =
𝑥2

2
−

𝑥

2
+

1

12
=

𝑥2

2!
+

𝐵1

1!
 

𝑥

1!
+

𝐵2

2!
 , 

 

𝑃3(𝑥) =
𝑥3

6
−

𝑥2

4
+

𝑥

12
=

𝑥3

3!
+

𝐵1

1!
 
𝑥2

2!
+

𝐵2

2!

𝑥 

1!
, 

 

𝑃4(𝑥) =
𝑥4

24
−

𝑥3

12
+

𝑥2

24
−

1

720
=

𝑥4

4!
+

𝐵1

1!
 
𝑥3

3!
+

𝐵2

2!

𝑥2

2!
+

𝐵4

4!
  

 

Hence in general, as may immediately be established by 

induction: 

 

𝑃𝑘(𝑥) =
𝑥𝑘

𝑘!
+

𝐵1

1!
 

𝑥𝑘−1

(𝑘 − 1)!
+

𝐵2

2!

𝑥(𝑘−2)

(𝑘 − 2)!
+ ⋯ +

𝐵𝑘

𝑘!
= 

1

𝑘!
((

𝑘

0
) 𝑥𝑘 + (

𝑘

1
) 𝐵1𝑥𝑘−1 + (

𝑘

2
) 𝐵2𝑥𝑘−2 + ⋯

+ (
𝑘

𝑘 − 1
) 𝐵𝑘−1(𝑥) + (

𝑘

𝑘
) 𝐵𝑘) 

Or 

 

(c) 𝑃𝐾(𝑥) =
1

𝑘!
(𝑥 + 𝐵)𝑘, 

 

If we employ the symbolic notation already used. These 

are the so-called Bernoulli's polynomials, which play an 

important part in many investigations. We shall meet with 

some of their important properties directly. 

First of all, however, we shall improve the formula by 

means of these polynomials. Integration by parts gives: 

 

∫ 𝑃1(𝑥)𝑓΄(𝑥)𝑑𝑥
𝑛

0
= (𝑃2𝑓΄)0

𝑛 − ∫ 𝑃2
𝑛

0
𝑓΄΄𝑑𝑥 =

𝐵2

2!
(𝑓΄𝑛 −

𝑓΄0) − (𝑃3𝑓΄΄)0
𝑛 + ∫ 𝑃3

𝑛

0
𝑓΄΄΄𝑑𝑥  

=
𝐵2

2!
(𝑓΄𝑛 − 𝑓΄0) + ∫ 𝑃3

𝑛

0

𝑓΄΄΄𝑑𝑥 

 

And, generally, 

 

∫ 𝑃2𝜆−1𝑓(2𝜆−1)𝑑𝑥
𝑛

0

=
𝐵2𝜆

(2𝜆)!
(𝑓𝑛

(2𝜆−1)
− 𝑓0

(2𝜆−1)
)

+ ∫ 𝑃2𝜆+1𝑓(2𝜆+1)
𝑛

0

𝑑𝑥 

 

for 𝜆 ≥ 1. Hence, for every 𝑘 ≥ 0, provided only that the 

derivatives of 𝑓(𝑥) involved exist and are continuous, we can 

write: 

 

𝑓0 + 𝑓1 + ⋯ + 𝑓𝑛 = ∫ 𝑓(𝑥)𝑑𝑥
𝑛

0
+

1

2
(𝑓𝑛 + 𝑓0) +

𝐵2

2!
(𝑓𝑛

΄ −

𝑓0
΄) +

𝐵4

4!
(𝑓𝑛

΄΄΄ − 𝑓0
΄΄΄) + ⋯ +

𝐵2𝑘

(2𝑘)!
(𝑓𝑛

(2𝑘−1)
− 𝑓0

(2𝑘−1)
) + 𝑅𝑘  

(9) 
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Where we put: 

 

𝑅𝑘 = ∫ 𝑃2𝑘+1(𝑥)
𝑛

0

𝑓(2𝑘+1)(𝑥)𝑑𝑥 

 

This is Euler's summation formula [2].  

Some Applications: 

1. It is obvious that the most favorable results are 

obtained when. the higher derivatives of 𝑓(𝑥) are very 

small, and especially when they vanish. We therefore 

first choose𝑓(𝑥)  = 𝑥𝑃, where 𝑝 is an integer ≥ 1,and 

we have: 

2.  

1𝑃 + 2𝑃 + 3𝑃 + ⋯ + 𝑛𝑃 = ∫ 𝑥𝑃𝑑𝑥
𝑛

0
+

1

2
𝑛𝑃 +

𝐵2

2!
𝑃𝑛𝑃−1 + ⋯      (10) 

 

Here the series on the right hand side is to be broken off at 

the last positive power of 𝑛, for (𝑓𝑛
(𝑘)

− 𝑓0
(𝑘)

) vanishes not 

only when 𝑓(𝑘)(𝑥) = 0, but also when 𝑓(𝑘)(𝑥) is identically 

equal to a non-vanishing constant. 

Thus, by transferring 𝑛𝑃 to the right hand side we have: 

 

1𝑃 + 2𝑃 + ⋯ + (𝑛 − 1)𝑃 =
1

𝑃+1
(𝑛𝑃+1 + (𝑃+1

1
)𝐵1𝑛𝑃 +

(𝑃+1
2

)𝐵2𝑛𝑃−1 + ⋯ ), 

 

or - since there is no constant term appearing inside the 

brackets on the right hand side: 

 

1𝑃 + 2𝑃 + ⋯ + (𝑛 − 1)𝑃 =
1

𝑃 + 1
((𝑛 + 𝐵)𝑃+1 − 𝐵𝑃+1) 

 

2. The sums dealt with the above can be obtained in quite 

a different way. If we 

imagine that each term of the sum: 

 

1 + 𝑒𝑡 + 𝑒2𝑡 + ⋯ + 𝑒(𝑛−1)𝑡 

 

is expanded in powers of 𝑡, the coefficient of 
𝑡𝑃

𝑃!
 is obviously 

 

1𝑃 + 2𝑃 + ⋯ + (𝑛 − 1)𝑃 

 

On the other hand, if we use symbolic notation, the first 

sum is equal to: 

 
𝑒𝑛𝑡−1

𝑒𝑡−1
=

𝑒𝑛𝑡−1

𝑡
𝑒𝐵𝑡 =

𝑒(𝑛+𝐵)𝑡−𝑒𝐵𝑡

𝑡
. 

 

Hence, we immediately obtain the expression 

 
1

𝑃 + 1
((𝑛 + 𝐵)𝑃+1 − 𝐵𝑃+1) 

 

For the coefficient of 
𝑡𝑃

𝑃!
. 

3. If we put 𝑓(𝑥) = 𝑒𝑎𝑥, 𝑛 = 1, we obtain: 

4.  

1

2
(𝑒𝛼 + 1) =

𝑒𝛼 − 1

𝛼
+ ∑

𝐵2𝑣

(2𝑣)!

𝑘

𝑣=1

𝛼2𝑣−1(𝑒𝛼 − 1)

+ 𝛼2𝑘+1 ∫ 𝑃2𝑘+1(𝑥)
1

0

𝑒𝛼𝑥𝑑𝑥 

Or 

 
𝛼

𝑒𝛼−1
= 1 −

𝛼

2
+ ∑

𝐵2𝑣

(2𝑣)!

∞
𝑣=1 𝛼2𝑣 +

𝛼2𝑘+2

𝑒𝛼−1
∫ 𝑃2𝑘+1(𝑥)

1

0
𝑒𝛼𝑥𝑑𝑥. 

 

Since we can immediately prove, that the remainder tends 

to zero in this case, provided only that |𝛼| < 2𝜋, we have, 

for these values of 𝛼, 

 

𝛼

𝑒𝛼 − 1
= 1 −

𝛼

2
+ ∑

𝐵2𝑣

(2𝑣)!

∞

𝑣=1

𝛼2𝑣 = ∑
𝐵𝜆

𝜆!

∞

𝜆=1

𝛼𝜆 

 

Similarly, by putting 𝑓(𝑥) = cos 𝛼𝑥 , 𝑛 = 1, we obtain the 

expansion for 
𝛼

2
 cot 

𝛼

2
 . 

5. If we put 𝑓(𝑥) =
1

1+𝑥
, we have, by replacing 𝑛 by 

(𝑛 − 1), 

6.  

1 +
1

2
+ ⋯ +

1

𝑛
= log 𝑛 +

1

2
+

1

2𝑛
+

𝐵2

2
(1 −

1

𝑛2
)

+
𝐵4

4
(1 −

1

𝑛4
) +. 

. . +
𝐵2𝑘

2𝑘
(1 −

1

𝑛2𝑘) − (2𝑘 + 1)! ∫
𝑃2𝑘+1(𝑥)

𝑥2𝑘+2

𝑛

1
𝑑𝑥. 

 

Since here we may let 𝑛 → ∞, we obtain the following 

refined expression for Euler's constant: 

 

𝑐 =
1

2
+

𝐵2

2
+

𝐵4

4
+ ⋯ +

𝐵2𝑘

2𝑘
− (2𝑘 + 1)! ∫

𝑃2𝑘+1(𝑥)

𝑥2𝑘+2

∞

1
𝑑𝑥. 

 

In this case the remainder certainly does not decrease to 0 

as 𝑘 increases; and the series ∑
𝐵2𝑘

2𝑘
 diverges rapidly, so 

rapidly that even the corresponding power series ∑
𝐵2𝑘

2𝑘
𝑥2𝑘 

diverges everywhere; for, by  

 

∑
1

𝑛2𝑝
∞
𝑛=1 = (−1)𝑝−1 𝐵2𝑝(2𝜋)2𝑝

2(2𝑝)!
 (𝑝 fixed), 

 

|𝐵2𝑘| =
2(2𝑘)!

(2𝜋)2𝑘 𝜂 where 1 < 𝜂 < 2. 

 

Nevertheless, we can evaluate 𝑐 very accurately by means 

of the above expression. If we take e. g. 𝑘 = 3, we have, in 

the first instance. 

 

(a) 𝐶 =
1

2
+

1

12
−

1

120
+

1

252
− 7! ∫

𝑃7(𝑥)

𝑥3

∞

1
𝑑𝑥. 

 

If we take only the part of the integral from 𝑥 = 1 to 𝑥 =
4, the absolute value of the error is: 

 

≤ 7!
4

(2𝜋)7 ∫
𝑑𝑥

𝑥3

∞

4
. 

 

Hence, 

 

𝑐 =
1459

2520
− 7! ∫

𝑃7(𝑥)

𝑥8

4

1

𝑑𝑥 +
𝜂

106
 

 

where 
|𝜂| < 1. 



    EJ-MATH, European Journal of Mathematics and Statistics 

ISSN: 2736-5484 

 

DOI: http://dx.doi.org/10.24018/ejmath.2021.2.3.32   Vol 2 | Issue 3 | July 2021 31 

 

The required evaluation of the integral is also given by the 

first formula written down, for 𝑛 = 4, namely: 

 

−7! ∫
𝑃7(𝑥)

𝑥8

4

1
𝑑𝑥 = 1 +

1

2
+

1

3
+

1

4
− log 4 −

1459

2520
−

1

2.4
+

1

12.42 −
1

120.44 +
1

252.46. 

 

Hence, 

 

0.5772146 < 𝑐 < 0.5772168. 

 

In this way we can easily obtain 𝑐 with much greater 

accuracy than before, and theoretically to any degree of 

accuracy whatever. The reason for this favorable state of 

affairs lies solely in the fact that we may regard the 

logarithms as known. 

 

VI. RESULTS 

The paper dealt with the infinite series and some 

applications to Euler's summation, and we took the model 

study (Euler's summation) and we came to the results of 

which is access to the relationship through the Euler's 

summation and we focused on the physical link questioner to 

make the study as an application for Euler's summation so it 

can be the beginning of advanced study in concept of the 

infinite series and its applications to Euler's summation. 
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