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Abstract — In this paper, an algorithm for the numerical evaluation of hypersingular finite-

part integrals with rapidly oscillating kernels is proposed. The method is based on an 

interpolatory procedure at zeros of the orthogonal polynomials with respect to the first kind 

Chebyshev weight. Bounds of the error and of the amplification factor are also provided. 

Numerically stable procedure are obtained and the corresponding algorithms can be 

implemented in a fast way. 
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I. INTRODUCTION  

The mathematical modeling of many areas of physics and technology, such as fracture mechanics, 

electromagnetic scattering (see [1-4] and the references therein) give rise to importance of evaluating 

singular and hypersingular integrals with rapidly oscillating kernel.  

Recently, approximate method for evaluating Cauchy singular integral of the form: 

 

𝐼(1)(ω, 𝑓; 𝑡) ≔ ∫
𝑓(𝑥)

(𝑥 − 𝑡)
𝑒𝑖ω𝑥𝑑𝑥

1

−1

, ω > 0, −1 < 𝑡 < 1,                                (1) 

 

is proposed in [5], where one can be found the comparison with the very few other methods available in 

the previous literature. 

In this paper, we propose a method to approximate the finite-part hypersingular integral: 

 

𝐼(2)(ω, 𝑓; 𝑡) ≔ ∫
𝑓(𝑥)

(𝑥 − 𝑡)2
𝑒𝑖ω𝑥𝑑𝑥

1

−1

, ω > 0, −1 < 𝑡 < 1,                             (2) 

 

taking into account the results in [5]. Only a small number of publications deals with the numerical 

evaluation of integrals in (2) (see [6,7]). In particular, the authors of [6] place their attention to construct of 

an optional with respect the order passive algorithms for evaluating Cauchy singular and hypersingular 

integrals with oscillating kernel as in (1) and (2). The idea followed here is entirely different consisting in 

proposing quadrature formulas of interpolation type that are convergent and stable with little computational 

effort.  

Defined the integral (2) as Cauchy principal value: 

 

𝐼(1)(ω, 𝑓; 𝑡) = limε→0+ {∫ + ∫ 1
1

𝑡+𝜀

𝑡−ε

−1

}
𝑓(𝑥)

(𝑥 − 𝑡)
𝑒𝑖ω𝑥𝑑𝑥 , ω > 0, −1 < 𝑡 < 1, 

 

the integral (2) can be transferred in the derivative of (1): 

 

𝐼(2)(ω, 𝑓; 𝑡) =
𝑑

𝑑𝑡
𝐼(1)(ω, 𝑓; 𝑡), ω > 0, −1 < 𝑡 < 1,                                       (3) 

 

see [8]. Further, 
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𝐼(2)(ω, 𝑓; 𝑡) = ∫

𝑑
𝑑𝑥

(𝑓(𝑥)𝑒𝑖ω𝑥)

𝑥 − 𝑡
𝑑𝑥

1

−1

+
𝑒𝑖ω𝑓(1)

1 − 𝑥
+

𝑒−𝑖ω𝑓(−1)

1 + 𝑥
, ω > 0, −1 < 𝑡 < 1,             (4) 

 

(see Ch. II, Lemma 6.1 in [9]). Before proceeding further, we recall that the existence of (1) is ensured, by 

assuming that the function f is Hӧlder continuous while the existence of the Hӧlder continuous derivative f 

assures the existence of integral in (2), (cf. [8]). 

In the next section, we present a method for evaluating integral in (2) making use of the values of f and 

f’ at the first kind Chebyshev zeros, proving bounds of the error and of the amplification factor. Although 

the deduced formula has the drawback of using twice as many functional evaluations, it has the advantage 

of having recourse only to the weights of the quadrature sum proposed in [5] to approximate (1).  

Bounds of the error and of the amplification factor are provided. 

 

II. A METHOD TO COMPUTE INTEGRAL (2) 

We start remarking that since (4) the numerical approximation of (2) can be connected to the quadrature 

of integrals of the following kind: 

 

𝐼ω(𝑓; 𝑡) ≔ ∫
𝑓(𝑥)

𝑥 − 𝑡

1

−1

sin ω 𝑥𝑑𝑥,                    𝐽ω(𝑓; 𝑡) ≔ ∫
𝑓(𝑥)

𝑥 − 𝑡

1

−1

cos ω 𝑥𝑑𝑥,               (5) 

 

and 𝐼ω(𝑓′; 𝑡),  𝐽ω(𝑓′; 𝑡). 
The approximation of the integrals in (5) can obtained by using the methods proposed and studied in [5]. 

Therefore in the following we will focus on quadrature of 𝐼ω(𝑓′; 𝑡), also because the integral 𝐽ω(𝑓′; 𝑡) can 

be treated in entirely analogous way. Two different methods can be followed approximating 𝐼ω(𝑓′; 𝑡) by 

 

𝐼𝑚
ω(𝑣α,β; 𝑓; 𝑡) ≔ ∫

𝐿𝑚(𝑣α,β; 𝑓′; 𝑡)

𝑥 − 𝑡

1

−1

sin ω 𝑥𝑑𝑥,                                                                      (6) 

 

Or 

 

𝐼𝑚
ω̂(𝑣α,β; 𝑓; 𝑡) ≔ ∫

𝐿𝑚
′ (𝑣α,β; 𝑓; 𝑡)

𝑥 − 𝑡

1

−1

sin ω 𝑥𝑑𝑥,                                                                        (7) 

 

where the Lagrange polynomial 𝐿𝑚(𝑣α,β; 𝑔) interpolates a given function g at the points 𝑥𝑚,𝑘
α,β

, 𝑘 = 1, … , 𝑚 

zeros of the mth Jacobi polynomial 𝑝𝑚
α,β

, 𝑚 ∈ ℕ, with respect to the exponent α, β > −1. 

In the present section we focus our attention on the use of (6) to approximate 𝐼ω(𝑓′; 𝑡) while in a further 

work [10] we propose and study the approximation of the same integral by (7). The major difference 

consists in the fact that if (6) is adopted it follows the overall approximation of (2) requires the computation 

of the function values 𝑓(𝑥𝑚,𝑘
α,β

) and 𝑓′(𝑥𝑚,𝑘
α,β

), 𝑘 = 1, . . , 𝑚, while the use of (7) requires only the evaluations 

𝑓(𝑥𝑚,𝑘
α,β

), 𝑘 = 1, … , 𝑚. Therefore the (7) leads to a lower computational cost, in addition to the fact that its 

use appears essential in quadrature methods for solving hypersingular integral equations. Nevertheless, the 

formula presented here has the advantage of having recourse only to the weights of the quadrature sum 

proposed into approximate (1).  

In the next we study the convergence of (6) to 𝐼ω(𝑓′; 𝑡). Let us denote by ωφ(𝑓; δ) the modulus of 

smoothness of a given function g, defined as: 

 

ω_φ ≔ 𝑆𝑢𝑝ℎ≤δ𝑚𝑎𝑥|𝑥|≤1| △ℎφ 𝑔(𝑥)|, 

 

where φ(𝑥) = √1 − 𝑥2 and △ℎφ 𝑔(𝑥) = 𝑔 (𝑥 +
ℎ

2
φ(𝑥)) − 𝑔 (𝑥 −

ℎ

2
φ(𝑥)),(cf. [11]). Further, we denote 

by ||𝑔||∞ = max|𝑥|≤1|𝑔(𝑥)| the usual uniform norm and by Λ𝑚α, β,  𝑚 ∈ ℕ the mth Lebesgue constant 

corresponding to the weight function 𝑣α,β. Then, for the quadrature (6) the next result holds true. 

 

Theorem 1. For every function 𝑓 ∈ 𝐶1 and ω ≥ 0 we have 

 

|𝐼𝑚
ω(𝑣α,β; 𝑓; 𝑡)| ≤ 𝐶 log

𝑒

1 − 𝑡2
(1 + ω + log 𝑚)Λ𝑚

α,β
|𝑓′|∞,                       (8) 

 

and 
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|𝐼ω(𝑓′; 𝑡) − 𝐼𝑚
ω(𝑣α,β; 𝑓; 𝑡)| ≤ 𝐶lo g

𝑒

1 − 𝑡2
. 

. {(1 + ω + 𝑙𝑜𝑔𝑚)Λ𝑚
α,β

ωφ (𝑓′;
1

𝑚
) + ∫

ωφ(𝑓′; δ)

δ
𝑑δ

1/𝑚

0

}, 

 

where C denotes a positive constant independent of m, f, ω and 𝑡 ∈ (−1,1). 

 

Proof. See Theorem 3.2 in [5]. 

We remark that by (8) we can know the behavior of the weighted amplification factor. Indeed, we deduce 

the following bound 

 

‖𝐼𝑚
ω(𝑣α,β𝑓) log−1

𝑒

1 − (. )2
‖ ≤ 𝐶(1 + ω + log 𝑚)‖𝑓′‖∞Λ𝑚

α,β
, 

 

where C denotes a positive constant independent of m, f and ω. 

Now let us see how to compute (6). For simplicity we assume α, β = −1/2 even if the generalization to 

any value of α, β > −1 is really trivial. So we denote by 𝑇𝑚 = 𝑝𝑚
−1/2,−1/2

 the Chebyschev orthogonal 

polynomial of the first kind and let 𝑥𝑚,𝑘 = 𝑥𝑚,𝑘
−1/2.−1/2

 be the zeros of 𝑇𝑚. Since, 

 

ℒ𝑚(𝑣−1/2,−1/2; 𝑓′; 𝑥) = ℒ𝑚(𝑓′; 𝑥) = ∑ ℓ𝑚,𝑘

𝑚

𝑘=1

(𝑥)𝑓′(𝑥𝑚,𝑘), 

 

where ℓ𝑚,𝑘, 𝑘 = 1, … , 𝑚 are the fundamental Lagrange polynomials with respect to the points 𝑥𝑚,𝑘 , 𝑘 =

1, … , 𝑚, we have: 

 

𝐼𝑚
ω(𝑣−1/2,−1/2; 𝑓; 𝑡) = 𝐼𝑚

ω(𝑓; 𝑡) = ∑ [∫
ℓ𝑚,𝑘(𝑥)

𝑥 − 𝑡

1

−1

sin ω 𝑥𝑑𝑥] 𝑓′(𝑥𝑚,𝑘)

𝑚

𝑘=1

, 

 

where 

 

ℓ𝑚,𝑘(𝑥) = ∑ 𝑎𝑖

𝑚−1

𝑖=0

𝑇𝑖(𝑥),   𝑘 = 1, … , 𝑚, 

 

with 

 

𝑎𝑖 = ∫ ℓ𝑚,𝑘(𝑥)𝑇𝑖(𝑥)
𝑑𝑥

√1 − 𝑥2

1

−1

=
π

𝑚
∑ ℓ𝑚,𝑘(𝑥𝑚,𝑗)𝑇𝑖(𝑥𝑚,𝑗)

𝑚

𝑗=1

=
π

𝑚
𝑇𝑖(𝑥𝑚,𝑘), 𝑖 = ,1, … , 𝑚 − 1. 

 

So,  

 

𝐼𝑚
𝜔(𝑓; 𝑡) =

𝜋

𝑚
∑ [∑ 𝑇𝑖(𝑥𝑚,𝑘)𝑞𝑖

𝜔(𝑡)𝑚−1
𝑖=0 ]𝑚

𝑘=1 𝑓′(𝑥𝑚,𝑘),                                      (9) 

 

where  

 

𝑞𝑖
ω(𝑡) = ∫

𝑇𝑖(𝑥)

𝑥−𝑡

1

−1
sin ω 𝑥𝑑𝑥,   𝑖 = 0,1,… 

 

Recalling that the polynomials 𝑇𝑛 , 𝑛 ∈ ℕ satisfy: 

 

𝑇0(𝑥) ≡ 1,  𝑇1(𝑥) = 𝑥, 𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥),  𝑛 = 1,2, …  , 
 

we try 

 

𝑞𝑛+1
ω (𝑡) = 2𝑡𝑞𝑛

ω(𝑡) − 𝑞𝑛−1
ω (𝑡) + 2𝑀𝑛

ω,  𝑛 = 1,2, …,                                    (10) 

 

where   

𝑀𝑛
ω = ∫ 𝑇𝑛(𝑥) sin ω

1

−1

𝑥𝑑𝑥,     𝑛 = 0,1, …  . 
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The accurate evaluation of the integral 𝑀𝑛
ω in (10) allows us to compute 𝑞𝑛

ω(𝑡) for 𝑛 = 1,2, …,  together 

with: 

 

𝑞0
ω(𝑡) = ∫

sin ω 𝑥

𝑥 − 𝑡
𝑑𝑥

1

−1

= sin ω 𝑥[Ci(τ1) − Ci(|𝜏2|)] + 

cos ω 𝑥[Si(τ1) + Si(|𝜏2|)], 
 

and 

 

𝑞1
ω(𝑡) = ∫

𝑥 sin ω 𝑥

𝑥 − 𝑡
𝑑𝑥

1

−1

= 𝑡𝑞0
ω(𝑡), 

 

where  

 

Si(τ) = ∫
sin 𝑥

𝑥

τ

0

𝑑𝑥,   Ci(τ) = ∫
cos 𝑥 − 1

𝑥

τ

0

𝑑𝑥 + log τ + 𝐶,  τ > 0, 

 

are the sine and cosine integral, respectively; τ1 = ω(1 − 𝑡), τ2 = −ω(1 + 𝑡) and C is the Euler constant. 

The starting values of (10) require the evaluation of the sine and cosine integrals that can be computed by 

some mathematical software like Mathematica [12]. 

Finally, we remark that (9) can be rewritten: 

 

𝐼𝑚
ω(𝑓; 𝑡) =

π

𝑚
∑ 𝐴𝑚,𝑖(𝑓)𝑞𝑖

ω(𝑡)

𝑚−1

𝑖=0

                                                          (11) 

 

with  

 

𝐴𝑚,𝑖(𝑓) = ∑ 𝑇𝑖(𝑥𝑚,𝑘)𝑓′(𝑥𝑚,𝑘)

𝑚

𝑘=1

,   𝑖 = 0, … , 𝑚 − 1. 

 

The coefficients 𝐴𝑚,𝑖(𝑓), 𝑖 = 0, … , 𝑚 − 1, are not influenced by the value t and the oscillatory factor ⍵. 

Thus the evaluation of 𝐼𝑚
ω(𝑓; 𝑡) in (11) can done following Clenshaw type algorithm: 

 

𝑧𝑚+1 = 𝑧𝑚 = 0,        𝑤𝑚 = 0, 
𝑧𝑘 = 2𝑡𝑧𝑘+1 − 𝑧𝑘+2 + 𝐴𝑚,𝑘(𝑓), 𝑘 = 𝑚 − 1, 𝑚 − 2, … ,0, 

𝑤𝑘 = 2𝑧𝑘+1𝑀𝑘
ω + 𝑤𝑘+1, 

𝐼𝑚
ω(𝑓; 𝑡) = 𝑞0

ω(𝑡)𝑧0 + 𝑤0. 
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