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Suzuki-Type of Common Fixed Point Theorems in
S-Fuzzy Metric Spaces

M. Jeyaraman and S. Sowndrarajan

Abstract — In this paper, by using of Suzuki-type approach
[Suzuki, T., A generalized Banach contraction principle that
characterizes metric completeness, Proc. Amer. Math. Soc., 136,
1861-1869, 2008.] we prove new type of Suzuki- type fixed point
theorem for non-Archimedean S - fuzzy metric spaces which is
generalization of Suzuki-Type fixed point results in S - metric
spaces.
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I. INTRODUCTION

In 1965, the concept of the fuzzy set was initially
investigated by Zadeh [13]. Then in 1975, Kramosil and
Michalek [4] introduced the fuzzy metric space as a
generalization of a metric space. In 1994, George and
Veeramani [2] modified the notion of fuzzy metric spaces by
using continuous t-norms. Fixed point theorems for
contractive mappings in metric spaces have been studied by
many authors (see [1], [5], [12]). The Banach contraction
principle is the most celebrated fixed point theorem and has
been generalized in various directions. In 2008 Suzuki [6]
introduced an interesting generalization of Banach
contraction principle. Recently, Sedghi, Shobe and Aliouche
[8] have defined the concept of S-metric space as a
generalization of a metric space, (see [3], [7], [9]-[11]) and
proved some fixed point results. In this paper, we introduce
the new contractive condition in the frame work of non-
Archimedean S-fuzzy metric spaces. We also prove the
corresponding coincidence fixed point theorem for two
mappings in this framework.

Il. PRELIMINARIES

A. Definition 2.1

A binary operation = : [0, 1] x [0,1] - [0,1] is a
continuous t — norm if it satisfies the following conditions:

1. * is associative and commutative;

2. x is continuous;

3.a*x 1 = q,forallae[0,1];

4.a*x b < ¢ xdwhenevera < candb < d, foreach
a,b,c,d € [0,1].

Examples for continuous t — norm are a X b =
min{a,b}anda X b = ab.
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B. Definition 2.2

A3 —tuple (X, S, *) is called S-fuzzy metric space if X is
an arbitrary non — empty set, * is a continuous t — norm, and

S is a fuzzy set on X* x [0, o) satisfying the following
conditions. For each x,y,z,a € Xandr,s,t > 0:
1. S(x,y,z,t) > 0;
2.S(x,y,z,t) = lifx = y= z
3. S5(x,y,z,t = S (p{x,y,z},t),where p is a permutation;
4. S(x,y,w,r) * S (x,w,z,5)*S (W,y,z,t) <
S (x,y,z,r + s+ t), (Tetrahedral inequality) .
5.5(x,y,2,.): (0,00) = [0,1]is continuous.

C. Example 2.3
Let X = [0, 1] with a usual metric. Define

S(x,y,z,t) =min{M(x,y,t),M(y,zt), M(z,x,t)}

t
t+d(x,y)
x,y € X.Then (X,S,x) is called S —fuzzy metric space.

D. Definition 2.4

A 3 —tuple (X, S, =) is called non-Archimedean S-fuzzy
metric space if X is an arbitrary non — empty set, * is a

where M(x,y,t) = and d(x,y) = |x—y | for all

continuous t — norm, and S is a fuzzy set on X3 x [0, o)
satisfying the following conditions. For each x,y,z,w € X
andr,t,u > 0:

1. S(x,y,2,t) > 0,

2. S(x,y,z,t) = 1lifx = y= 2z

3. S(x,y,z,t) =S (p{x,y,z},t), where p is a permutation

4. S(x,y,w,r)* S (x,w,z,8) *S (W, y,2,t)

< S(xyzrvtvu),

where r vVt V u= max {r,t,u}, (Tetrahedral inequality) .
5.5(x,y,2,.): (0,00) = [0,1]is continuous.

E. Definition 2.5

Let (X, S, *) be a S- fuzzy Metric space, x € X and {x,}
be a sequence in X. Then:

1. A sequence {x, } is said to be convergent to x if for every
e > 0, there exists ny € N such that S(x,,, x,,x,t) >1—¢
foralln = n,.

2. A sequence {x,} is said to be a Cauchy sequence if for
eache > 0and there exists nyg€ N such that
S, Xpy X, t) > 1 — e forallm,n = n,,.
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3. The S-fuzzy metric space is called complete if every
Cauchy sequence is convergent.

F. Lemma?2.6

Let (X, S, *) be an S-fuzzy metric space. If there exists
sequence {x,} and {y,} such that limx, = x and
n—oo

lim y, =y, then lim S (x,, x,,, ¥n,t) = S(x, x, y, t) for all x,
n—oo n—-oo
y€EX.

Il. MAIN RESULTS

A. Theorem 3.1

Let axb =ab for all a, be[0, 1] and (X, S, *) be a
complete non- Archimedean S - fuzzy metric space. Let T, R:
X — X be two self maps and 8:[0,1) — (l2 , 1] be defined

by:

( 1,0<r <%
H(r)={1—;’",ﬂ3rsi 1)
T 2

If there exists r € [0, 1) such that for each x,y,z € X,
t > 0 satisfying the condition:

max{S(x,y, Tx,t),S(x,y,Rx,t)}* > S(x,y,z,t) (2)

implies
S(Rx,Ry,Rz,t) * S(Tx,Ty, Tz,t) *}
> r
{S(Rx. Ry,Tz,t) « S(Tx,Ty,Rz,t) J = $Cxy.2,t)

©)

Then there exists a unique common fixed point of T and R.

B. Proof

At first, we prove that if v is a fixed point of T, then it is
also fixed point of R and vice versa. Hence, let v be a fixed
point of T, then we will show that Rv = v.

Taking x,y = vand z = Tv in (2) and (3), We get:

1 = max{S(w,v,Tv,t),S(v, v, Rv, t)}¢™ >S(v,v, Ty, t)
implies
Rv, Rv, RT Tv,Tv,T?
{ S(Rv, Rv, zv,t) *S{v,Tv, 770, 6) } >S(w,v, T, t)"
* S(Rv,Rv, T?v,t) * S(RTv,Tv, Ty, t)
=1 (4)
Thus, S(Rv,Rv,v,t) = 1. i.e., v is a fixed point of R.
Similarly, we can show that if v is a fixed point of R, then it
is also fixed point of T. Now to prove our theorem, it is
enough to prove that T and R has a fixed point.
Putting x,y = x and z = Tx in (2) and (3), we get:
max {S(x, x, Tx, t), S(x, x, Rx, t)}e(r) > S(x,x,Tx, t)

implies
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{S(RX, Rx, RTx, t) * S(Tx, Tx, T?x,t) *
S(Rx, Rx, T%x,t) * S(RTx, Tx, Tx, t)

} > S(x,x Tx, )"
Hence,

S(Tx,Tx, T?x,t) = S(x,x,Tx,t)" forallxeX (5)
and

S(Tx,Tx,RTx,t) = S(x,x,Tx,t) forall x € X. (6)

Putting x,y = x and z = Rx in (2.2) and (2.3). Hence,
form

max{S(x,x,Tx,t),S(x, x, Rx, t)}e(r) > S(x,x,Rx,t)
implies

{S(Rx, Rx,R%x,t) x S(Tx, Ty, TRx, t) *
S(Rx,Rx,TRx, t) x S(R%*x, Tx, Tx, t)

} > S(x,x,Rx,t)"
Hence,

S(Rx,Rx,TRx,t) = S(x,x,Rx,t)" forallx € X @)
Letx, € X be arbitrary and form the sequence {x,} by x; =

Rxy and Xpp4q = RXon, Xonsz = TXaneq for n € N U {0}.

By (6), we have
S(%X2n, X2m) Xoms1,t) = S(Txpp_1, TXpn—1, RT X554, 1)

= S(Xan-1,Xon-1, TXon_1, )"

=S(Xzn-1X2n-1, X2, 1) (8)

Also, by (7) we have:

S(X2n+1, X2ne1 Xzne2s t) = S(RXzp, R¥n, TRX 3, 1)
= S(xan Xon» RXZn, t)r

= S(Xan) Xon Xons1, )" %)

By (8), (9) we have:

S(xn,xn_, Xn+1r t) > S(xn—l,xn—l,’ Xn, t)r. (10)
Hence, by induction, we have:
S(xn_xn_, Xn+1» t) = S(an_,xnl,,, Xn, t)r
> e > S(x0%0, %1, t) (11)

By Tetrahedral inequality in S — fuzzy metric space for
m > n we have,

S(xn,xn,i Xmo t) 2 S(xn,xn,' Xn+1 t) * S(xn+1,xn+1,' Xn+2s t)
*oeee ok S(xm—l,xm—l,! X t)

rn rn+1
= S(x(,‘xo_, X1, t) * S(xorxor, Xq, t)
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K oeee S(xo’xoy, Xq, t)rm_l

n+1

rit r
= S(xo‘xo,, X1, t) .S(xo,xoi, X1, t)

Tm_l
"'.S(xony’, Xl, t)
As 0 < r < 1, we have:

2 —-n—
S(xn,xn,'xm' t) — S(xo,xo,' X1, t)rn(1+r+r +oeprm—n 1)

Tm
= S(xgx0,%1,t)1-r > lasm — oo,

So, we have lim S(xp, x,, X, t) = 1.
n,m —oo

It follows that {x,} is a Cauchy sequence. Since X is
Complete S- fuzzy metric space, there is some v in X such
that,

lim Rx,, = limx,,,; =v
n—-co n-—oo
and
lim Tx,,,.q = limx,,,, =v
n—-oo n—-oo

We show that v is a common fixed point of T and R.
It is enough to prove that Tv = v. Now we consider x € X

with x # v.
As &1_{{.10 S(x2n+1 X2n41, Txoner, £) = 1

lim S(Xn41,X2ne1, X t) # 1, therefore there exists some
n—-oo

and

Xomy+1 € X'such that
0(r)
{S(Xan+1' Xong+1 TXon,+10 t)’}
max
S(x2nk+1' x2nk+1' sznk+1l t)
2 S(Xznp+1 X2 X0 )

implies,

{ S(RXan+1' RXan+1, Rx' t) * S(Txan+1' TXan+1, Tx, t)
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Sw,v,Tx,t) = S(v,v,x,t)" (12)
Now by induction, we prove that,

S, v, T"v,t) = S(v,v, Ty, t) foralln € N. (13)

For n = 1, the inequality is obvious.
Suppose the inequality (13) is true for somem € N

S(w,v,T™v,t) = S(v,v, Ty, t)

Now forn =m + 1, if T™v = wvthen

S(w,v,T™ 1y, t) = S(v,v,Tv, t)

If T™v # vthen by (12)

S(w,v,T™ 1y, t) =S, v, T™v,t)"
> S(w,v, Ty, t)"
> S(w,v, Ty, t) (14)

Hence, the inequality (13) holds for eachn € N.

Let us assume that Tv # v. Now, we prove the following
inequality by the principle of mathematical induction
S(Tv, Tv,T™v,t) = S(v,v,Tv,t)" foreachn € N (15)

For n =1, itis obvious. Further from (5) the inequality (15)
holds forn = 2.

Suppose (15) holds for some n > 2, then we have:
S(Tv,Tv,v,t) = S(v, v, Ty, t)

> S(v,v, T"v,t) * 2S(Tv, Tv, T™v,t)
> S(v,v, T"v,t) * 2S(v,v, Tv, t)"

Therefore,

S(w,v,Tv, )4 > S(v,v, T, t). (16)

Case:0 <7 < — (hence 8(r) = %) Hence,

} T Vz
* S(Rxanﬂ, Rixon+1 TXony+1) t) * S(Rx; Txynp+1 TXon410 t) max{S( T, T"v, T"*v, t), S(T™v, T"v, RT™v, t)}e(r)

= S(xan+1' Xong+1 X, )"
Hence,

S(Xan+2, Xong+2s Tx, t) = S(sznk+1; sznk+1’ Tx, t)
= S(Xanp+1 Xang+1, % 8"

Taking limitasn — oo, we have:
Sw,v,Tx,t) = ALUC}O S(Xznp+2 X242, TX, t)
= Ai_?;los(xan+1' Xong+1 %6 0"

=S,v,x,t)"

Therefore, for each x # v,
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1-r
> S(T™, T™W, T v, t) r2

1-r
> S(T"w, T™, T" 1y, t) 2
So, by (16), we have:
max{S( T™v, T"v, T"*1v, t), S(T"v, T"v, RT"v, t)}*™
1-r
> S(T™, T"w, T v, t) %
> S(v,v, Ty, )"

> S(v,v,T™v, t)

=S(T"v, T"v,v,t),
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implies that
{S(RT"U,RT"U, Rv,t) * S(T™ v, T 1y, Ty, t) *}
S(RT™v, RT™, Tv,t) * S(Rv, T" v, T 1y, t)
=>S(T"v, T™v,v,t)"

Using (10), we obtain
S(Tv, Tv, T** v, t) = S(v,v, T"v, t)"
>S,v, Ty, t)"

So, the inequality (14) holds foreahn € N. Now Tv # v
and (14) implies that T"v # v (If T™v = v, then we find
S(T"v, T™,v,t) = S(v, v, Ty, t)"implies:

S, v, Tv, t) < S(v,v, Ty, t)"

< S(v,v, Ty, t), which is not possible.
Hence, (13) implies that:

S, v, T"" v, t) =S, v, T v, t)"
> S, v, T 1y, t)r2
> S(v,v, Ty, t)’"n

Hence, lim S(v,v, T**1v,t) = 1 this implies that T® - v.
n—-oo
From this and (3.1.15), we have:

S(Tv,Tv,v,t) = limS(Tv,Tv,T™v, t)
n-oo
> limS(,v, Ty, t)"
n—-oo

=S(Tv,Tv,v,t)".

Thus, S(Tv,Tv,v,t) =1. Which is contrary to our
assumption. Hence, Tv = v. As already proved v is fixed
point of R also. Hence, Tv = Rv = v.

L1 _ 1 .
Case IlI: 5 <r<1(hence 6(r) = 1+r) . We will prove
that there exist a subsequence {x,,, } of {x,} such that:

1
S(xnk’ X Txnk’ t)m = S(xnk’ Xnp Vs t)’

1
or S(xnk, Xy Rxnk, t)i_” = S(xnk, Xy Vs t),

holds for each k € N. Suppose that for every n € N.
Then by (10) we have,

1
maX{S(xn' xnl Txnl t)l S(xnl xnl Rxnl t)}m
< S(xp, Xp, v, t)

Hence,

1
S(Xon+1r Xone1 TXons1, T < S(Xopi1, Xone1, V) t)
and S(x,y, Xon, RXon, t) < S(Xop, Xon, v, t) holds for every
n € N.
Then by (10) we have:
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S(Xan+1) Xon+1) X2ms )
= S(Xon+1) Xons1, Vs t) * S(Xop, Xon, U, t)

1
> S(Xon+1) Xone1r TXons1, 14
1
* S(XZn' Xon, TXom, t)T+r

r 1
> S (%X, Xy Xon1, DT % % S(Xon, Xop, Xong1, £ HT

= S(X2n Xon X2n4+1, )

which is impossible. Hence one of the following holds for
each n:

S(Xz2n+1 Xan+1 TXo2n 41, t)e(r) = S(Xon+1 Xont1, U, 1)
Or
S(XZn' Xons RxZn' t) oM = S(XZn' Xon U, t)
If the following inequality hold:
SC2n+1 Xoni1 TXons1, )9 = S(Xani1, X2n41, 0, 1)
implies that

{ S(Rxyp, Rxyp, RU, t) * S(Txyy, Txyp, TV, t) }
* S(Rxp, RXgn, TV, t) * S(RV, TXgy, TXopn, t)

> S(xon, Xon, U, )"
Hence,
S(X2n41 X2n41, TV, 1) = S(RX2pn, Rx5p, TV, 1)
> S(xon, Xon, U, )"
Passing to the limit when n — oo, we get that

S(w,v,Tv,t) =1, which is possible only if Tv =w.
Similarly, if the following inequality hold.

S(xZn' Xon» RxZn: t)@(r) 2 S(xZn' Xom U, t)

We have Tv = v. Thus, we have proved that v is a fixed
point of T.

Finally, we prove the uniqueness of the fixed point. Let v
and u be to common fixed points of T and R, such that v #
u. Taking x,y = vandz =uin (2) and (3), we get:

1= max{S(v, v, Tv, t), S(‘U' v, Rv, t)}@(r) > S(U, v,u, t)
implies
S(Rv,Rv,Ru,t) * S(Tv, Tv, Tu, t) }
> r
{* S(Rv,Rv,Tu,t) * S(Ru, Tv, Ty, t) ) = S(w,v,u,t)
Therefore,  S(v,v,u,t) = S, v,u, t)" > S(v,v,u,t),

which is not possible. Hence v = u. This completes the proof.
Taking R = T, we get the Suzuki type result.
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C. Corollary 3.2

Let (X, S,*) be a complete S-fuzzy metric space. If T: X —
X be a self mappingand 6 : [0,1) — (;1, 1] is defined by (1).
Assume that there exists r € [0,1)such that for each

x,y,z €X,
S(x,y,Tx, )M > S(x,y,2,t)
implies
S(Tx,Ty,Tz,t) = S(x,y,z,t)"

Then T has a unique fixed point v € X.

D. Proof

To prove the corollary, It is enough to set R =T in
Theorem (1).

E. Corollary 3.3
Let (X, S, *) be a complete S- fuzzy metric space. Let f, R,
T: X - X be three self-maps and 6:[0,1) - (l2 ,1] be

defined by (2.1). Assume that there exists r € [0, 1) such that
for eachx,y,z € X,

max {S(x, v, fTx,t),S(x,y, fRx, )}’ > S(x,y,z,t)
implies

{S(fo,fRy,fRz, t) «S(fTx, fTy, fTz,t) *}
S(fRx, fRy, fTz,t) x S(fRz, fTy, fTx,t)

> S(x,y,2,t)"

And if f is one-to-one, fR = Rf and fT =Tf, then
f,T and R have a unique common fixed point v € X.

F. Proof

Considering fR and fT as two maps in the given
contractive condition of Theorem (3.1), we get a unique
common fixed point for fR and fT ,i.e., fRv = fTv = v.
Since f is one-to-one, fRv = fTv impliesthat Rv = T v.
From

1 =max{S(v,v, fTv,t),S(v,v, fRv, £)}e™
=>S(,v, Ty, t)

implies

{ S(fRv, fRv, fRTv,t) * S(fTv, fTv, fT?v,t) }
* S(fRv, fRv, fT?v,t) * S(fRTv, fTv, fTv, t)

_{ S(fRv, fRv,RfTv,t) * S(fTv, fTv, TfTv,t) }
e S(fRv, fRv, TfTv,t) x S(RfTv, fTv, fTv, t)

_ {S(v, v,Rv,t) * S(v,v,Tv, t) *}
S, v, Ty, t) *S(Rv,v,v,t)

=S(v,v,Tv,t)

=S, v, Ty, t)".
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Therefore Tv = v, hence v is common fixed point of
f,RandT.

G. Corollary 3.4

Let (X, S, *) be a complete S- fuzzy metric space. Let
T,R: X — X betwo self maps such that for each x,y,z € X,
satisfying the following condition. If there exists r € [0,1)
such that for each X, y, z € Xsatisfying the condition

1
max{S(x,y,Tx,t),S(x,y,Rx,t)}z = S(x,y,2,t)
implies

{ S(Rx,Ry,Rz,t) » S(Tx, Ty, Tz,t)

> r
*S(Rx,Ry,Tz,t) * S(Tx, Ty, Rz,1) } z Sxyz0

Then there exists a unique common fixed point of T and R.
H. Proof
Itisenoughtosetr = § in Theorem 3.1, we get the result.

IV. CONCLUSION

In this article, we have proved some new type of Suzuki- type
fixed point theorem for non-Archimedean S - fuzzy metric spaces
which is generalization of Suzuki-Type fixed point results in S —
fuzzy metric spaces. Also, we have shown the existence and
uniqueness of fixed points for three self maps in the same structure.
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