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Abstract — In this paper, by using of Suzuki-type approach 

[Suzuki, T., A generalized Banach contraction principle that 

characterizes metric completeness, Proc. Amer. Math. Soc., 136, 

1861–1869, 2008.] we prove new type of Suzuki- type fixed point 

theorem for non-Archimedean S - fuzzy metric spaces which is 

generalization of Suzuki-Type fixed point results in S - metric 

spaces. 

 

Key words — Fixed point, Suzuki-Contraction, S-fuzzy metric 

space. 

 

I. INTRODUCTION 

In 1965, the concept of the fuzzy set was initially 

investigated by Zadeh [13]. Then in 1975, Kramosil and 

Michalek [4] introduced the fuzzy metric space as a 

generalization of a metric space. In 1994, George and 

Veeramani [2] modified the notion of fuzzy metric spaces by 

using continuous t-norms. Fixed point theorems for 

contractive mappings in metric spaces have been studied by 

many authors (see [1], [5], [12]). The Banach contraction 

principle is the most celebrated fixed point theorem and has 

been generalized in various directions. In 2008 Suzuki [6] 

introduced an interesting generalization of Banach 

contraction principle. Recently, Sedghi, Shobe and Aliouche 

[8] have defined the concept of S-metric space as a 

generalization of a metric space, (see [3], [7], [9]-[11]) and 

proved some fixed point results. In this paper, we introduce 

the new contractive condition in the frame work of non-

Archimedean S-fuzzy metric spaces. We also prove the 

corresponding coincidence fixed point theorem for two 

mappings in this framework. 

 

II. PRELIMINARIES 

A. Definition 2.1 

A binary operation ∗ : [0, 1] × [0,1] → [0, 1] is a 

continuous t – norm if it satisfies the following conditions: 

1. ∗ is associative and commutative; 

2. ∗ is continuous; 

3. 𝑎 ∗  1 =  𝑎, for all a ∈ [0, 1]; 

4. 𝑎 ∗  𝑏 ≤  𝑐 ∗ 𝑑 whenever 𝑎 ≤  𝑐 and 𝑏 ≤  𝑑, for each 

𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1]. 
Examples for continuous t – norm are 𝑎 ×  𝑏 =

 𝑚𝑖𝑛 {𝑎, 𝑏} and 𝑎 ×  𝑏 =  𝑎𝑏. 
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B. Definition 2.2 

A 3 – tuple (X, S, ∗ ) is called S-fuzzy metric space if X is 

an arbitrary non – empty set, ∗ is a continuous t – norm, and 

S is a fuzzy set on X
3

 × [0, ∞) satisfying the following 

conditions. For each 𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋 and 𝑟, 𝑠, 𝑡 >  0: 
1. 𝑆(𝑥, 𝑦, 𝑧, 𝑡)  >  0; 
2. 𝑆(𝑥, 𝑦, 𝑧, 𝑡) =  1 𝑖𝑓 𝑥 =  𝑦 =  𝑧; 
3. 𝑆(𝑥, 𝑦, 𝑧, 𝑡 =  𝑆 (𝑝{𝑥, 𝑦, 𝑧}, 𝑡),where p is a permutation; 

4. 𝑆(𝑥, 𝑦, 𝑤, 𝑟) ∗  𝑆 (𝑥, 𝑤, 𝑧, 𝑠) ∗ 𝑆 (𝑤, 𝑦, 𝑧, 𝑡)  ≤
 𝑆 (𝑥, 𝑦, 𝑧, 𝑟 + 𝑠 +  𝑡), (Tetrahedral inequality) . 

5. 𝑆(𝑥, 𝑦, 𝑧, . ): (0,∞)  →  [0, 1] is continuous. 

C. Example 2.3 

Let X = [0, 1] with a usual metric. Define 

 

𝑆(𝑥, 𝑦, 𝑧, 𝑡) = 𝑚𝑖𝑛 {𝑀(𝑥, 𝑦, 𝑡),𝑀(𝑦, 𝑧, 𝑡),𝑀(𝑧, 𝑥, 𝑡)} 
 

where 𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡+𝑑(𝑥,𝑦)
 and 𝑑(𝑥, 𝑦) =  | 𝑥 − 𝑦 | for all 

𝑥, 𝑦 ∈  𝑋. Then (X, S,∗) is called S –fuzzy metric space. 

D. Definition 2.4 

A 3 – tuple (X, S, ∗ ) is called non-Archimedean S-fuzzy 

metric space if X is an arbitrary non – empty set, ∗ is a 

continuous t – norm, and S is a fuzzy set on X
3

 × [0, ∞) 

satisfying the following conditions. For each 𝑥, 𝑦, 𝑧, 𝑤 ∈  𝑋 

and 𝑟, 𝑡, 𝑢 >  0: 
1. 𝑆(𝑥, 𝑦, 𝑧, 𝑡)  >  0, 
2.  𝑆(𝑥, 𝑦, 𝑧, 𝑡)  =  1 𝑖𝑓 𝑥 =  𝑦 =  𝑧, 
3. 𝑆(𝑥, 𝑦, 𝑧, 𝑡) = 𝑆 (𝑝{𝑥, 𝑦, 𝑧}, 𝑡), where p is a permutation 
4. 𝑆(𝑥, 𝑦, 𝑤, 𝑟) ∗  𝑆 (𝑥, 𝑤, 𝑧, 𝑠) ∗ 𝑆 (𝑤, 𝑦, 𝑧, 𝑡) 
 

≤  𝑆 (𝑥, 𝑦, 𝑧, 𝑟 ∨ 𝑡 ∨  𝑢), 
 

where 𝑟 ∨ 𝑡 ∨  𝑢= max  {𝑟, 𝑡, 𝑢} , (Tetrahedral inequality) . 
5. 𝑆(𝑥, 𝑦, 𝑧, . ): (0,∞)  →  [0, 1] is continuous. 

E. Definition 2.5 

Let (X, S, ∗) be a S- fuzzy Metric space, x ∈  X and {xn} 

be a sequence in X. Then: 

1. A sequence {𝑥𝑛} is said to be convergent to 𝑥 if for every 

𝜀 > 0, there exists n0 ∈  ℕ such that S(𝑥𝑛, 𝑥𝑛 , 𝑥, 𝑡) > 1 − 𝜀 
for all n ≥ n0. 

2. A sequence {𝑥𝑛} is said to be a Cauchy sequence if for 

each 𝜀 > 0 and  there exists n0 ∈  ℕ such that 

S(𝑥𝑚 , 𝑥𝑛 , 𝑥𝑛 , 𝑡) > 1 − 𝜀 for all m, n ≥ n0. 
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3. The S-fuzzy metric space is called complete if every 

Cauchy sequence is convergent. 

F. Lemma 2. 6 

Let (X, S, ∗) be an S-fuzzy metric space. If there exists 

sequence {xn} and {yn} such that  lim
n→∞

 𝑥𝑛  =  𝑥 and 

 lim
n→∞

 𝑦𝑛 = y, then  lim
n→∞

 S (𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛 ,t) = 𝑆(𝑥, 𝑥, 𝑦, 𝑡) for all x, 

y ∈ X. 

 

III. MAIN RESULTS 

A. Theorem 3.1 

Let 𝑎 ∗ 𝑏 = 𝑎𝑏 for all a, b ∈ [0, 1] and (X, S, ∗) be a 

complete non- Archimedean S - fuzzy metric space. Let T, R: 

X → X be two self maps and 𝜃: [0, 1) → (
1

 2
 , 1] be defined 

by: 

 

𝜃(𝑟) =

{
 
 

 
 

 

 1 , 0 ≤ 𝑟 ≤  
√5−1

2

1−𝑟

𝑟2
 ,
√5−1

2
 ≤ 𝑟 ≤  

1

√2
1

 1+𝑟
 ,
1

√2
 ≤ 𝑟 ≤ 1 

    (1) 

 

If there exists 𝑟 ∈ [0, 1) such that for each 𝑥, 𝑦, 𝑧 ∈ 𝑋,  

𝑡 > 0 satisfying the condition: 

 

max{𝑆(𝑥, 𝑦, 𝑇𝑥, 𝑡), 𝑆(𝑥, 𝑦, 𝑅𝑥, 𝑡)}𝜃(𝑟)  ≥ 𝑆(𝑥, 𝑦, 𝑧, 𝑡)  (2) 

 

implies 

{
𝑆(𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝑡) ∗ 𝑆(𝑇𝑥, 𝑇𝑦, 𝑇𝑧, 𝑡) ∗

𝑆(𝑅𝑥, 𝑅𝑦, 𝑇𝑧, 𝑡) ∗ 𝑆(𝑇𝑥, 𝑇𝑦, 𝑅𝑧, 𝑡) 
}  ≥  𝑆(𝑥, 𝑦, 𝑧, 𝑡) 𝑟

      (3) 

 

Then there exists a unique common fixed point of T and R. 

B. Proof 

At first, we prove that if 𝑣 is a fixed point of T, then it is 

also fixed point of R and vice versa. Hence, let 𝑣 be a fixed 

point of T, then we will show that 𝑅𝑣 = 𝑣. 

Taking 𝑥, 𝑦 = 𝑣 and 𝑧 = 𝑇𝑣 in (2) and (3), We get: 

 

1 = 𝑚𝑎𝑥{𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡), 𝑆(𝑣, 𝑣, 𝑅𝑣, 𝑡)}𝜃(𝑟) >𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) 
 

implies  

 

 {
𝑆(𝑅𝑣, 𝑅𝑣, 𝑅𝑇𝑣, 𝑡) ∗ 𝑆(𝑇𝑣, 𝑇𝑣, 𝑇2𝑣, 𝑡)

∗ 𝑆(𝑅𝑣, 𝑅𝑣, 𝑇2𝑣, 𝑡) ∗ 𝑆(𝑅𝑇𝑣, 𝑇𝑣, 𝑇𝑣, 𝑡) 
}  ≥ 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) 𝑟  

 = 1   (4) 

 

Thus, 𝑆(𝑅𝑣, 𝑅𝑣, 𝑣, 𝑡) = 1. i.e., v is a fixed point of R. 

Similarly, we can show that if 𝑣 is a fixed point of R, then it 

is also fixed point of T. Now to prove our theorem, it is 

enough to prove that T and R has a fixed point. 

Putting 𝑥, 𝑦 = 𝑥 and 𝑧 = 𝑇𝑥 in (2) and (3), we get: 

 

max {𝑆(𝑥, 𝑥, T𝑥, 𝑡), 𝑆(𝑥, 𝑥, 𝑅𝑥, 𝑡)}𝜃(𝑟)  ≥ 𝑆(𝑥, 𝑥, 𝑇𝑥, 𝑡) 
 

implies 

 

{
S(Rx, Rx, RTx, t) ∗ S(Tx, Tx, T2x, t) ∗

S(Rx, Rx, T2x, t) ∗ S(RTx, Tx, Tx, t) 
}  ≥  S(x, x, Tx, t) r 

 

Hence, 

 

𝑆(𝑇𝑥, 𝑇𝑥, 𝑇2𝑥, 𝑡) ≥  S(x, x, Tx, t) r  for all x ∈ X  (5) 

 

and  

 

𝑆(𝑇𝑥, 𝑇𝑥, 𝑅𝑇𝑥, 𝑡) ≥  𝑆(𝑥, 𝑥, 𝑇𝑥, 𝑡) for all x ∈ X.  (6) 

 

Putting 𝑥, 𝑦 = 𝑥 and 𝑧 = 𝑅𝑥 in (2.2) and (2.3). Hence, 

form 

 

𝑚𝑎𝑥{𝑆(𝑥, 𝑥, 𝑇𝑥, 𝑡), 𝑆(𝑥, 𝑥, 𝑅𝑥, 𝑡)}𝜃(𝑟)  ≥ 𝑆(𝑥, 𝑥, 𝑅𝑥, 𝑡) 
 

implies  

 

{
𝑆(𝑅𝑥, 𝑅𝑥, 𝑅2𝑥, 𝑡) ∗ 𝑆(𝑇𝑥, 𝑇𝑦, 𝑇𝑅𝑥, 𝑡) ∗

𝑆(𝑅𝑥, 𝑅𝑥, 𝑇𝑅𝑥, 𝑡) ∗ 𝑆(𝑅2𝑥, 𝑇𝑥, 𝑇𝑥, 𝑡) 
}  ≥  𝑆(𝑥, 𝑥, 𝑅𝑥, 𝑡) 𝑟 

 

Hence,  

 

𝑆(𝑅𝑥, 𝑅𝑥, 𝑇𝑅𝑥, 𝑡) ≥  𝑆(𝑥, 𝑥, 𝑅𝑥, 𝑡) 𝑟 for all x ∈ X  (7) 

 

Let x0 ∈ X be arbitrary and form the sequence {xn} by x1 =
Rx0 and 𝑥2𝑛+1 = 𝑅𝑥2𝑛 , 𝑥2𝑛+2 = 𝑇𝑥2𝑛+1  for 𝑛 ∈  ℕ ∪ {0}. 
By (6), we have  

 

𝑆(𝑥2𝑛, 𝑥2𝑛 , 𝑥2𝑛+1, 𝑡) = 𝑆(𝑇𝑥2𝑛−1, 𝑇𝑥2𝑛−1, 𝑅𝑇𝑥2𝑛−1, 𝑡) 

 

 ≥ 𝑆( 𝑥2𝑛−1, 𝑥2𝑛−1, 𝑇𝑥2𝑛−1, 𝑡)
𝑟  

 

 = 𝑆( 𝑥2𝑛−1, 𝑥2𝑛−1, 𝑥2𝑛 , 𝑡)
𝑟 .    (8) 

 

Also, by (7) we have: 

 

𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2, 𝑡) = 𝑆(𝑅𝑥2𝑛, 𝑅𝑥2𝑛 , 𝑇𝑅𝑥2𝑛, 𝑡) 

 ≥ 𝑆(𝑥2𝑛, 𝑥2𝑛 , 𝑅𝑥2𝑛 , 𝑡)
𝑟 

 

 = 𝑆(𝑥2𝑛 , 𝑥2𝑛,  𝑥2𝑛+1, 𝑡)
𝑟 .     (9) 

 

By (8), (9) we have: 

 

𝑆(𝑥𝑛,𝑥𝑛,, 𝑥𝑛+1, 𝑡)  ≥ 𝑆(𝑥𝑛−1,𝑥𝑛−1,, 𝑥𝑛, 𝑡)
𝑟
.  (10) 

 

Hence, by induction, we have: 

 

 𝑆(𝑥𝑛,𝑥𝑛,, 𝑥𝑛+1, 𝑡)  ≥ 𝑆(𝑥𝑛1,,𝑥𝑛1,,, 𝑥𝑛 , 𝑡)
𝑟
  

 ≥ ⋯ ≥ 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑛

   (11) 

 

By Tetrahedral inequality in S – fuzzy metric space for  

m > 𝑛 we have, 

 

𝑆(𝑥𝑛,𝑥𝑛,, 𝑥𝑚, 𝑡)  ≥ 𝑆(𝑥𝑛,𝑥𝑛,, 𝑥𝑛+1, 𝑡) ∗ 𝑆(𝑥𝑛+1,𝑥𝑛+1,, 𝑥𝑛+2, 𝑡)

∗ ⋯∗ 𝑆(𝑥𝑚−1,𝑥𝑚−1,, 𝑥𝑚 , 𝑡) 

 

  ≥ 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑛

∗ 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑛+1
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 ∗ ⋯ ∗ 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑚−1 

 

 ≥ 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑛

. 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑛+1

. 

 

⋯ . 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑚−1

 

 

As 0 < 𝑟 < 1, we have: 

 

 𝑆(𝑥𝑛,𝑥𝑛,, 𝑥𝑚, 𝑡) = 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑛(1+𝑟+𝑟2+⋯+𝑟𝑚−𝑛−1) 

 

 ≥ 𝑆(𝑥0,𝑥0,, 𝑥1, 𝑡)
𝑟𝑚

1−𝑟  → 1 as m → ∞. 

 

So, we have lim
𝑛,𝑚 →∞

𝑆(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚 , 𝑡) = 1. 

It follows that {xn} is a Cauchy sequence. Since X is 

Complete S- fuzzy metric space, there is some 𝑣 in X such 

that, 

 

lim
𝑛→∞

𝑅𝑥2𝑛 = lim
n→∞

𝑥2𝑛+1 = 𝑣 

 

 and  

 

lim
n→∞

𝑇𝑥2𝑛+1 = lim
n→∞

𝑥2𝑛+2 = 𝑣  

 

We show that 𝑣 is a common fixed point of T and R. 

It is enough to prove that Tv = v. Now we consider x ∈ X 

with x ≠ v. 

As lim
n→∞

 S(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑇𝑥2𝑛+1, 𝑡) = 1 and 

lim
n→∞

 S(x2n+1, x2n+1, x, t)  ≠ 1, therefore there exists some 

𝑥2𝑛𝑘+1 ∈ X such that 

 

 max {
S(𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, T𝑥2𝑛𝑘+1, t),

S(𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, R𝑥2𝑛𝑘+1, t)
}

θ(r)

  

 

 ≥ S(𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, x, t) 

 

implies, 

 

{
𝑆(𝑅𝑥2𝑛𝑘+1, 𝑅𝑥2𝑛𝑘+1, 𝑅𝑥, 𝑡) ∗ 𝑆(𝑇𝑥2𝑛𝑘+1, 𝑇𝑥2𝑛𝑘+1, 𝑇𝑥, 𝑡)

∗ 𝑆(𝑅𝑥2𝑛𝑘+1, 𝑅𝑥2𝑛𝑘+1, 𝑇𝑥2𝑛𝑘+1, 𝑡) ∗ 𝑆(𝑅𝑥, 𝑇𝑥2𝑛𝑘+1, 𝑇𝑥2𝑛𝑘+1, 𝑡)
}  

 ≥ 𝑆(𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, 𝑥, 𝑡)
𝑟 

 

Hence, 

 

𝑆(𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+2, 𝑇𝑥, 𝑡) =  𝑆(𝑇𝑥2𝑛𝑘+1, 𝑇𝑥2𝑛𝑘+1, 𝑇𝑥, 𝑡) 

 ≥ 𝑆(𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, 𝑥, 𝑡)
𝑟 

 

Taking limit as 𝑛 →  ∞, we have: 

 

 𝑆(𝑣, 𝑣, 𝑇𝑥, 𝑡) =  lim
n→∞

 𝑆( 𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+2, 𝑇𝑥, 𝑡) 

 

 ≥ lim
n→∞

𝑆(𝑥2𝑛𝑘+1, 𝑥2𝑛𝑘+1, 𝑥, 𝑡)
𝑟 

 

  = 𝑆(𝑣, 𝑣, 𝑥, 𝑡)𝑟  

Therefore, for each 𝑥 ≠ 𝑣, 

 

 𝑆(𝑣, 𝑣, 𝑇𝑥, 𝑡)  ≥  𝑆(𝑣, 𝑣, 𝑥, 𝑡)𝑟     (12) 

 

Now by induction, we prove that, 

 

 𝑆(𝑣, 𝑣, 𝑇𝑛𝑣, 𝑡)  ≥  𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) for all 𝑛 ∈  ℕ. (13) 

 

For n = 1, the inequality is obvious. 

Suppose the inequality (13) is true for some 𝑚 ∈  ℕ 

 

𝑆(𝑣, 𝑣, 𝑇𝑚𝑣, 𝑡)  ≥  𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) 
 

Now for 𝑛 = 𝑚 + 1, if 𝑇𝑚𝑣 =  𝑣 then  

 

 𝑆(𝑣, 𝑣, 𝑇𝑚+1𝑣, 𝑡)  =  𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) 
 

If Tmv ≠  v then by (12) 

 

𝑆(𝑣, 𝑣, 𝑇𝑚+1𝑣, 𝑡)  ≥ 𝑆(𝑣, 𝑣, 𝑇𝑚𝑣, 𝑡)𝑟  
 

 ≥  𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟 

 
>  𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)      (14) 

 

Hence, the inequality (13) holds for each n ∈ ℕ. 

Let us assume that Tv ≠ v. Now, we prove the following 

inequality by the principle of mathematical induction 

S(𝑇𝑣, 𝑇𝑣, 𝑇𝑛𝑣, 𝑡)  ≥  𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟for each 𝑛 ∈  ℕ (15) 

For n = 1, it is obvious. Further from (5) the inequality (15) 

holds for n = 2. 

Suppose (15) holds for some n > 2, then we have: 

 

𝑆(𝑇𝑣, 𝑇𝑣, 𝑣, 𝑡) = 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) 
 

 ≥ 𝑆(𝑣, 𝑣, 𝑇𝑛𝑣, 𝑡) ∗  2𝑆(𝑇𝑣, 𝑇𝑣, 𝑇𝑛𝑣, 𝑡)  
 

 ≥ 𝑆(𝑣, 𝑣, 𝑇𝑛𝑣, 𝑡) ∗ 2𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟 

 

Therefore,  

 

𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)(1−𝑟) ≥ 𝑆(𝑣, 𝑣, 𝑇𝑛𝑣, 𝑡).   (16) 

 

Case I: 0 ≤ 𝑟 ≤  
1

√2 
 ( hence θ(r) =

1−r

r2
 ) Hence, 

 

max{𝑆( 𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑇𝑛+1𝑣, 𝑡), 𝑆(𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑅𝑇𝑛𝑣, 𝑡)}𝜃(𝑟)  

≥   𝑆( 𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑇𝑛+1𝑣, 𝑡)
1−𝑟
𝑟2  

 

 ≥  𝑆( 𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑇𝑛+1𝑣, 𝑡)
1−𝑟

𝑟2  

 

So, by (16), we have: 

 

max{𝑆( 𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑇𝑛+1𝑣, 𝑡), 𝑆(𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑅𝑇𝑛𝑣, 𝑡)}𝜃(𝑟)  
 

 ≥   𝑆( 𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑇𝑛+1𝑣, 𝑡)
1−𝑟

𝑟2    

 

 ≥ 𝑆( 𝑣, 𝑣, 𝑇𝑣, 𝑡)1−𝑟    

 

   ≥  𝑆( 𝑣, 𝑣, 𝑇𝑛𝑣, 𝑡)   

 

   = 𝑆(𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑣, 𝑡), 
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implies that  

 

{
𝑆(𝑅𝑇𝑛𝑣, 𝑅𝑇𝑛𝑣, 𝑅𝑣, 𝑡) ∗ 𝑆(𝑇𝑛+1𝑣, 𝑇𝑛+1𝑣, 𝑇𝑣, 𝑡) ∗

𝑆(𝑅𝑇𝑛𝑣, 𝑅𝑇𝑛𝑣, 𝑇𝑣, 𝑡) ∗ 𝑆(𝑅𝑣, 𝑇𝑛+1𝑣, 𝑇𝑛+1𝑣, 𝑡)
}  

≥ 𝑆(𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑣, 𝑡)𝑟  

 

Using (10), we obtain 

 

𝑆(𝑇𝑣, 𝑇𝑣, 𝑇𝑛+1𝑣, 𝑡) ≥ 𝑆(𝑣, 𝑣, 𝑇𝑛𝑣, 𝑡)𝑟  
 

 ≥ 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟 

 

So, the inequality (14) holds for eah 𝑛 ∈  ℕ. Now Tv ≠ v 

and (14) implies that Tnv ≠ v (If 𝑇𝑛𝑣 =  𝑣, then we find 

𝑆(𝑇𝑛𝑣, 𝑇𝑛𝑣, 𝑣, 𝑡) ≥ 𝑆( 𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟implies: 

 

𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) ≤ 𝑆( 𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟   

 

 < 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡), which is not possible. 

Hence, (13) implies that: 

 

𝑆(𝑣, 𝑣, 𝑇𝑛+1𝑣, 𝑡)  ≥ 𝑆(𝑣, 𝑣, 𝑇𝑛𝑣, 𝑡)𝑟 

 

  ≥ 𝑆(𝑣, 𝑣, 𝑇𝑛−1𝑣, 𝑡)𝑟
2
 

 

 ≥  𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟
𝑛
 

 

Hence, lim
𝑛→∞

S(v, v, Tn+1v, t) = 1 this implies that Tn → v. 

From this and (3.1.15), we have: 

 

𝑆(𝑇𝑣, 𝑇𝑣, 𝑣, 𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝑆(𝑇𝑣, 𝑇𝑣, 𝑇𝑛𝑣, 𝑡) 

 

 ≥ 𝑙𝑖𝑚
𝑛→∞

𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟  

 

 = 𝑆(𝑇𝑣, 𝑇 𝑣, 𝑣, 𝑡)𝑟 . 

 

Thus, 𝑆(𝑇𝑣, 𝑇𝑣, 𝑣, 𝑡) = 1. Which is contrary to our 

assumption. Hence, 𝑇𝑣 =  𝑣. As already proved 𝑣 is fixed 

point of R also. Hence, 𝑇𝑣 = 𝑅𝑣 = 𝑣. 

Case II: 
1

√2
 ≤ 𝑟 < 1 (hence 𝜃(𝑟) =

1

1+𝑟
 ) . We will prove 

that there exist a subsequence {𝑥𝑛𝑘} of {𝑥𝑛} such that: 

 

𝑆(𝑥𝑛𝑘 , 𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘 , 𝑡)
1

1+𝑟 ≥  𝑆(𝑥𝑛𝑘 , 𝑥𝑛𝑘 , 𝑣, 𝑡), 

 

 or 𝑆(𝑥𝑛𝑘 , 𝑥𝑛𝑘 , 𝑅𝑥𝑛𝑘 , 𝑡)
1

1+𝑟 ≥  𝑆(𝑥𝑛𝑘 , 𝑥𝑛𝑘 , 𝑣, 𝑡), 

 

 holds for each 𝑘 ∈ ℕ. Suppose that for every 𝑛 ∈  ℕ. 

Then by (10) we have, 

 

max{𝑆(𝑥𝑛 , 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑡), 𝑆(𝑥𝑛 , 𝑥𝑛, 𝑅𝑥𝑛 , 𝑡)}
1
1+𝑟  

 

 <  𝑆(𝑥𝑛, 𝑥𝑛 , 𝑣, 𝑡) 
 

Hence, 

 𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑇𝑥2𝑛+1, 𝑡)
1
1+𝑟 <  𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑣, 𝑡) 

and 𝑆(𝑥2𝑛 , 𝑥2𝑛 , 𝑅𝑥2𝑛 , 𝑡) < 𝑆(𝑥2𝑛 , 𝑥2𝑛 , 𝑣, 𝑡) holds for every 

𝑛 ∈ ℕ. 

Then by (10) we have: 

 

𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛 , 𝑡)
≥  𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑣, 𝑡) ∗ 𝑆(𝑥2𝑛, 𝑥2𝑛 , 𝑣, 𝑡) 

 

 > 𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑇𝑥2𝑛+1, 𝑡)
1

1+𝑟 

 

 ∗ 𝑆(𝑥2𝑛 , 𝑥2𝑛 , 𝑇𝑥2𝑛 , 𝑡)
1
1+𝑟  

 

 > 𝑆(𝑥𝑛 , 𝑥𝑛, 𝑥2𝑛+1, 𝑡)
𝑟

1+𝑟 ∗   ∗ 𝑆(𝑥2𝑛, 𝑥2𝑛 , 𝑥2𝑛+1, 𝑡)
1

1+𝑟 

 

  = 𝑆(𝑥2𝑛 , 𝑥2𝑛, 𝑥2𝑛+1, 𝑡) 
 

which is impossible. Hence one of the following holds for 

each 𝑛:  

 

𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑇𝑥2𝑛+1, 𝑡)
𝜃(𝑟) ≥ 𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑣, 𝑡)  

 

Or 

 

 𝑆(𝑥2𝑛 , 𝑥2𝑛, 𝑅𝑥2𝑛 , 𝑡) 
𝜃(𝑟) ≥ 𝑆(𝑥2𝑛, 𝑥2𝑛 , 𝑣, 𝑡)  

 

If the following inequality hold: 

 

𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑇𝑥2𝑛+1, 𝑡)
𝜃(𝑟) ≥ 𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑣, 𝑡) 

 

implies that  

 

{
𝑆(𝑅𝑥2𝑛, 𝑅𝑥2𝑛, 𝑅𝑣, 𝑡) ∗ 𝑆(𝑇𝑥2𝑛, 𝑇𝑥2𝑛, 𝑇𝑣, 𝑡)

∗ 𝑆(𝑅𝑥2𝑛 , 𝑅𝑥2𝑛 , 𝑇𝑣, 𝑡) ∗ 𝑆(𝑅𝑣, 𝑇𝑥2𝑛 , 𝑇𝑥2𝑛 , 𝑡)
}  

 

 ≥ 𝑆(𝑥2𝑛 , 𝑥2𝑛, 𝑣, 𝑡)
𝑟 

 

Hence,  

 

𝑆(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑇𝑣, 𝑡) = 𝑆(𝑅𝑥2𝑛 , 𝑅𝑥2𝑛 , 𝑇𝑣, 𝑡)  
 

 ≥ 𝑆(𝑥2𝑛 , 𝑥2𝑛, 𝑣, 𝑡)
𝑟 

 

Passing to the limit when 𝑛 → ∞, we get that 

𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) ≥ 1, which is possible only if 𝑇𝑣 = 𝑣. 

Similarly, if the following inequality hold. 

 

𝑆(𝑥2𝑛, 𝑥2𝑛 , 𝑅𝑥2𝑛 , 𝑡)
𝜃(𝑟)  ≥ 𝑆(𝑥2𝑛 , 𝑥2𝑛, 𝑣, 𝑡)  

 

We have 𝑇𝑣 = 𝑣. Thus, we have proved that 𝑣 is a fixed 

point of T.  

Finally, we prove the uniqueness of the fixed point. Let 𝑣 

and 𝑢 be to common fixed points of T and R, such that 𝑣 ≠
𝑢. Taking 𝑥, 𝑦 = 𝑣 and 𝑧 = 𝑢 in (2) and (3), we get: 

 

1 = max{𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡), 𝑆(𝑣, 𝑣, 𝑅𝑣, 𝑡)}𝜃(𝑟) ≥ 𝑆(𝑣, 𝑣, 𝑢, 𝑡) 
 

 implies  

 

{
𝑆(𝑅𝑣, 𝑅𝑣, 𝑅𝑢, 𝑡) ∗ 𝑆(𝑇𝑣, 𝑇𝑣, 𝑇𝑢, 𝑡)

∗ 𝑆(𝑅𝑣, 𝑅𝑣, 𝑇𝑢, 𝑡) ∗ 𝑆(𝑅𝑢, 𝑇𝑣, 𝑇𝑣, 𝑡) 
}  ≥ 𝑆(𝑣, 𝑣, 𝑢, 𝑡)𝑟 

Therefore, 𝑆(𝑣, 𝑣, 𝑢, 𝑡) ≥ 𝑆(𝑣, 𝑣, 𝑢, 𝑡)𝑟 > 𝑆(𝑣, 𝑣, 𝑢, 𝑡), 
which is not possible. Hence 𝑣 = 𝑢. This completes the proof. 

Taking 𝑅 =  𝑇, we get the Suzuki type result. 
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C. Corollary 3.2  

Let (𝑋, 𝑆,∗) be a complete S-fuzzy metric space. If 𝑇: 𝑋 →

𝑋 be a self mapping and 𝜃 ∶ [0, 1) → (
 1

2
, 1] is defined by (1). 

Assume that there exists 𝑟 ∈ [0, 1)such that for each 

𝑥, 𝑦, 𝑧 ∈ 𝑋, 

 

 𝑆(𝑥, 𝑦, 𝑇𝑥, 𝑡)𝜃(𝑟)  ≥ 𝑆(𝑥, 𝑦, 𝑧, 𝑡) 
 

implies  

 

   𝑆(𝑇𝑥, 𝑇𝑦, 𝑇𝑧, 𝑡) ≥  𝑆(𝑥, 𝑦, 𝑧, 𝑡)𝑟 

 

Then T has a unique fixed point 𝑣 ∈ 𝑋.  

D. Proof 

To prove the corollary, It is enough to set 𝑅 = 𝑇 in 

Theorem (1). 

E. Corollary 3.3 

Let (X, S, ∗) be a complete S- fuzzy metric space. Let f, R, 

T: X → X be three self-maps and 𝜃: [0, 1) → (
1

 2
 , 1] be 

defined by (2.1). Assume that there exists 𝑟 ∈ [0, 1) such that 

for each𝑥, 𝑦, 𝑧 ∈ 𝑋,  

 

max {𝑆(𝑥, 𝑦, 𝑓𝑇𝑥, 𝑡), 𝑆(𝑥, 𝑦, 𝑓𝑅𝑥, 𝑡)}𝜃(𝑟)  ≥ 𝑆(𝑥, 𝑦, 𝑧, 𝑡) 
 

implies  

 

{
𝑆(𝑓𝑅𝑥, 𝑓𝑅𝑦, 𝑓𝑅𝑧, 𝑡) ∗ 𝑆(𝑓𝑇𝑥, 𝑓𝑇𝑦, 𝑓𝑇𝑧, 𝑡) ∗

𝑆(𝑓𝑅𝑥, 𝑓𝑅𝑦, 𝑓𝑇𝑧, 𝑡) ∗ 𝑆(𝑓𝑅𝑧, 𝑓𝑇𝑦, 𝑓𝑇𝑥, 𝑡)
}  

 

 ≥  𝑆(𝑥, 𝑦, 𝑧, 𝑡) 𝑟 

 

And if 𝑓 is one-to-one, 𝑓𝑅 = 𝑅𝑓 and 𝑓𝑇 = 𝑇𝑓, then 

𝑓, 𝑇 𝑎𝑛𝑑 𝑅 have a unique common fixed point 𝑣 ∈ 𝑋. 

F. Proof 

Considering 𝑓𝑅 and 𝑓𝑇 as two maps in the given 

contractive condition of Theorem (3.1), we get a unique 

common fixed point for 𝑓𝑅 and 𝑓𝑇 , i.e.,  𝑓𝑅𝑣 =  𝑓𝑇 𝑣 =  𝑣. 
Since 𝑓 is one-to-one, 𝑓𝑅𝑣 =  𝑓𝑇𝑣 implies that 𝑅𝑣 =  𝑇 𝑣.  

From  

 

1 = max{𝑆(𝑣, 𝑣, 𝑓𝑇𝑣, 𝑡), 𝑆(𝑣, 𝑣, 𝑓𝑅𝑣, 𝑡)}𝜃(𝑟)

≥ 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) 
 

 implies  

 

{
𝑆(𝑓𝑅𝑣, 𝑓𝑅𝑣, 𝑓𝑅𝑇𝑣, 𝑡) ∗ 𝑆(𝑓𝑇𝑣, 𝑓𝑇𝑣, 𝑓𝑇2𝑣, 𝑡)

∗ 𝑆(𝑓𝑅𝑣, 𝑓𝑅𝑣, 𝑓𝑇2𝑣, 𝑡) ∗ 𝑆(𝑓𝑅𝑇𝑣, 𝑓𝑇𝑣, 𝑓𝑇𝑣, 𝑡) 
}  

 

 = {
𝑆(𝑓𝑅𝑣, 𝑓𝑅𝑣, 𝑅𝑓𝑇𝑣, 𝑡) ∗ 𝑆(𝑓𝑇𝑣, 𝑓𝑇𝑣, 𝑇𝑓𝑇𝑣, 𝑡)

∗ 𝑆(𝑓𝑅𝑣, 𝑓𝑅𝑣, 𝑇𝑓𝑇𝑣, 𝑡) ∗ 𝑆(𝑅𝑓𝑇𝑣, 𝑓𝑇𝑣, 𝑓𝑇𝑣, 𝑡) 
} 

 

= {
𝑆(𝑣, 𝑣, 𝑅𝑣, 𝑡) ∗ 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) ∗

𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡 ) ∗ 𝑆(𝑅𝑣, 𝑣, 𝑣, 𝑡)
} 

 

= 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡) 
 

≥ 𝑆(𝑣, 𝑣, 𝑇𝑣, 𝑡)𝑟 . 
 

Therefore 𝑇𝑣 = 𝑣, hence 𝑣 is common fixed point of 

𝑓, 𝑅 𝑎𝑛𝑑 𝑇. 

G. Corollary 3.4  

Let (X, S, ∗) be a complete S- fuzzy metric space. Let 

𝑇, 𝑅: 𝑋 →  𝑋 be two self maps such that for each 𝑥, 𝑦, 𝑧 ∈ 𝑋, 

satisfying the following condition. If there exists 𝑟 ∈ [0, 1) 
such that for each x, y, z ∈ 𝑋satisfying the condition  

 

max{𝑆(𝑥, 𝑦, 𝑇𝑥, 𝑡), 𝑆(𝑥, 𝑦, 𝑅𝑥, 𝑡)}
1

 2  ≥ 𝑆(𝑥, 𝑦, 𝑧, 𝑡) 
 

 implies  

 

{
𝑆(𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝑡) ∗ 𝑆(𝑇𝑥, 𝑇𝑦, 𝑇𝑧, 𝑡)

∗ 𝑆(𝑅𝑥, 𝑅𝑦, 𝑇𝑧, 𝑡) ∗ 𝑆(𝑇𝑥, 𝑇𝑦, 𝑅𝑧, 𝑡) 
}  ≥  𝑆(𝑥, 𝑦, 𝑧, 𝑡) 𝑟 

 

Then there exists a unique common fixed point of T and R. 

H. Proof 

 It is enough to set 𝑟 =  
1

2
 in Theorem 3.1, we get the result. 

 

IV. CONCLUSION  

In this article, we have proved some new type of Suzuki- type 

fixed point theorem for non-Archimedean S - fuzzy metric spaces 

which is generalization of Suzuki-Type fixed point results in S – 

fuzzy metric spaces. Also, we have shown the existence and 

uniqueness of fixed points for three self maps in the same structure. 
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