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The Lie Group Structure
of Genus Two Hyperelliptic ℘ Functions

Masahito Hayashi, Kazuyasu Shigemoto, and Takuya Tsukioka

Abstract

We consider the generalized dual transformation for hyperelliptic ℘ functions. For the genus two case, by constructing a
quadratic invariant form, we find that hyperelliptic ℘ functions have the SO(3,2) ∼= Sp(4,R)/Z2 Lie group structure.

Index Terms

Generalized dual transformation, Genus two hyperelliptic ℘ function, SO(3,2) ∼= Sp(4,R)/Z2 Lie group structure, Higher
dimensional KdV equation.

I. INTRODUCTION

Some special type of non-linear differential equations can be solved exactly and further provide a series of infinitely many
solutions. We are interested in those “solvable/integrable” mechanisms.

Soliton equations are examples of such equations, hence various methods for studying soliton systems are beneficial for our
objective. Starting from the inverse scattering method [1]- [3], the soliton theory has many interesting developments, such as
the AKNS formulation [4], geometrical approach [5]- [7], Bäcklund transformation [8]- [10], Hirota equation [11], [12], Sato
theory [13], vertex construction of the soliton solution [14]- [16], and Schwarzian type mKdV/KdV equation [17].

Non-linear integrable models imply the existence of the potential. KdV equation which is a typical soliton equation has a
solution of the Weierstrass ℘ function. The τ function is considered as a potential of the KdV equation in the form u(x−vt) =
−2∂2

x log τ(x−vt), and the τ function corresponds to the σ function of the Weierstrass ℘ function, ℘(u) = −∂2
u log σ(u). Thus,

differential equations of hyperelliptic ℘ functions are the natural generalization of higher dimensional non-linear integrable
models, and the σ function plays a role of potential. Hence, hyperelliptic ℘ functions are expected to have an optimal property
to examine Lie group structures.

We expect that there is a Lie group structure behind some non-linear differential equations, which may be a reason why
such non-linear differential equations have infinitely many solutions. Here an addition formula of the Lie group structure
might be essential. As the representation of the addition formula of the Lie group, algebraic functions such as trigonomet-
ric/elliptic/hyperelliptic functions will emerge for solutions of special differential equations.

The AKNS formalism for the Lax pair is a powerful tool to examine the Lie algebra structure of soliton equations in
non-linear integrable models. In our previous researches, we deduced the SO(2,1) ∼= Sp(2,R)/Z2 Lie algebra structure for
two-dimensional KdV/ mKdV/ sinh-Gordon models [18]- [23]. Owing to the fact that the KdV equation has the solution of the
elliptic ℘ function, we deduced that the genus one elliptic ℘ function had the SO(2,1) ∼= Sp(2,R)/Z2 Lie algebra structure. In
addition, observing the SO(3,2) ∼= Sp(4,R)/Z2 Lie algebra structure for the two-flows (two-dimensional) Kowalevski top [24],
we found that genus two hyperelliptic ℘ functions possessed the SO(3,2) ∼= Sp(4,R)/Z2 Lie algebra structure. By directly using
the algebraic addition formula of genus two ℘ functions, we obtained the degree two Sp(4,R) Lie group structure [25].

For the general hyperelliptic differential equations, the Lax pair, especially the AKNS formalism, is not known. Thus we
directly study the algebraic addition formula and differential equations themselves to find Lie group structure behind. In this
study, we use the generalized dual transformation (GDT) to study Lie group structures of genus two hyperelliptic ℘ functions.

II. THE SP(4,R)/Z2
∼= SO(3,2) LIE GROUP STRUCTURE OF GENUS TWO HYPERELLIPTIC ℘ij FUNCTIONS

We parametrize the genus two hyperelliptic curve on R in the form:

y2 =

6∑
n=0

λnx
n =

6∑
n=0

6Cnanx
n = a6x

6 + 6a5x
5 + 15a4x

4 + 20a3x
3 + 15a2x

2 + 6a1x+ a0, (1)
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where we put a6 = 0 in the end. The Jacobi’s inversion problem is the problem to express the symmetric combination of x1

and x2 as the function of u1 and u2 by using relations:

du1 =
dx1

y1
+

dx2

y2
, du2 =

x1dx1

y1
+

x2dx2

y2
. (2)

From above relations, we obtain:
∂x1

∂u2
=

y1
x1 − x2

,
∂x2

∂u2
= − y2

x1 − x2
,

∂x1

∂u1
= − x2y1

x1 − x2
,

∂x2

∂u1
=

x1y2
x1 − x2

. (3)

Thus, we obtain:
∂(x1 + x2)

∂u1
= −∂(x1x2)

∂u2
. (4)

As the solution of the Jacobi’s inversion problem, we define:

℘22(u1, u2) =
λ5

4
(x1 + x2), ℘21(u1, u2) = −λ5

4
x1x2, (5)

and Eq.(4) provides the integrability condition of genus two hyperelliptic ℘ functions:
∂℘22(u1, u2)

∂u1
=

∂℘21(u1, u2)

∂u2
.

Furthermore, if we define [26], [27]:

℘11(u1.u2) =
F (x1, x2)− 2y1y2

4(x1 − x2)2
, (6)

F (x1, x2) = 2a6x
3
1x

3
2 + 6a5x

2
1x

2
2(x1 + x2) + 30a4x

2
1x

2
2 + 20a3x1x2(x1 + x2) + 30a2x1x2

+6a1(x1 + x2) + 2a0,

we obtain full integrability conditions:
∂℘22(u1, u2)

∂u1
=

∂℘21(u1, u2)

∂u2
,

∂℘21(u1, u2)

∂u1
=

∂℘11(u1, u2)

∂u2
. (7)

Next, we define another genus two hyperelliptic ℘̂ functions constructed from the σ function in the form:

℘̂ij(u1, u2) = −∂2 log σ(u1, u2)

∂ui∂uj
. (8)

Though ℘ij(u1, u2) and ℘̂ij(u1, u2) satisfy the same integrability conditions:

∂i℘jk(u1, u2) = ∂j℘ik(u1, u2) and ∂i℘̂jk(u1, u2) = ∂j℘̂ik(u1, u2),

℘ij(u1, u2) and ℘̂ij(u1, u2) are not equal but differ by a constant. By the dimension analysis, we obtain [℘22] = [1/u2
2] =

[y2/x4], [℘21] = [1/u1u2] = [y2/x3], [℘11] = [1/u2
1] = [y2/x2], [a4] = [y2/x4], [a3] = [y2/x3], [a2] = [y2/x2], so that three

pairs (℘22, a4), (℘21, a3), and (℘11, a2) have the same dimensions. Thus, we put:

℘22(u1, u2) = ℘̂22(u1, u2)− k22a4, (9)
℘21(u1, u2) = ℘̂21(u1, u2)− k21a3, (10)
℘11(u1, u2) = ℘̂11(u1, u2)− k11a2, (11)

where ai are coefficients of the hyperelliptic curve, and k22, k21, k11 are some numerical constants. We determine constants
kij in such a way as whole differential equations transform covariantly 1.

Let us start with the following differential equations [27], [28],

1) ℘2222 − 6℘2
22 + 3λ6℘11 − λ5℘21 − λ4℘22 −

1

8
λ5λ3 +

1

2
λ6λ2 = 0, (12)

2) ℘2221 − 6℘22℘21 +
1

2
λ5℘11 − λ4℘21 +

1

4
λ6λ1 = 0, (13)

3) ℘2211 − 4℘2
21 − 2℘22℘11 −

1

2
λ3℘21 +

1

2
λ6λ0 = 0, (14)

4) ℘2111 − 6℘21℘11 − λ2℘21 +
1

2
λ1℘22 +

1

4
λ5λ0 = 0, (15)

5) ℘1111 − 6℘2
11 − λ2℘11 − λ1℘21 + 3λ0℘22 −

1

8
λ3λ1 +

1

2
λ4λ0 = 0. (16)

1In the general coordinate transformation, a tensor Tµν transforms covariantly in the form T ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν Tαβ . We use the terminology transform

covariantly in the same way. Observing a transformation ℘̂′
ij =

∂up

∂u′
i

∂uq

∂u′
j

℘̂pq which shows up later, we may say that ℘̂ij transform covariantly.
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We rewrite the above differential equations with an instead of λn. Later we will explain how to determine kij , but we provide
here the values of them, k22 = 3/2, k21 = 1/2, k11 = 3/2. Thus, the constant shift of ℘ij are given in the form:

℘22 = ℘̂22 −
3

2
a4, ℘21 = ℘̂21 −

1

2
a3, ℘11 = ℘̂11 −

3

2
a2. (17)

Hence, we obtain constant shifted differential equations [27]:

1)′ ℘̂2222 − 6℘̂2
22 + 3 (a6℘̂11 − 2a5℘̂21 + a4℘̂22) + 3

(
a6a2 − 4a5a3 + 3a24

)
= 0, (18)

2)′ ℘̂2221 − 6℘̂22℘21 + 3 (a5℘̂11 − 2a4℘̂21 + a3℘̂22) +
3

2
(a6a1 − 3a5a2 + 2a4a3) = 0, (19)

3)′ ℘̂2211 − (4℘̂2
21 + 2℘̂22℘̂11) + 3 (a4℘̂11 − 2a3℘̂21 + a2℘̂22) +

1

2

(
a6a0 − 9a4a2 + 8a23

)
= 0, (20)

4)′ ℘̂2111 − 6℘̂21℘̂11 + 3 (a3℘̂11 − 2a2℘̂21 + a1℘̂22) +
3

2
(a5a0 − 3a4a1 + 2a3a2) = 0, (21)

5)′ ℘̂1111 − 6℘̂2
11 + 3 (a2℘̂11 − 2a1℘̂21 + a0℘̂22) + 3

(
a4a0 − 4a3a1 + 3a22

)
= 0. (22)

From Eqs.(18)–(22), we define the first, second, third and fourth term of each equation as the component of vectors of P, Q,
R and S in the form:

P =


℘̂2222

℘̂2221

℘̂2211

℘̂2111

℘̂1111

 , Q =


−6℘̂2

22

−6℘̂22℘̂21

−4℘̂2
21 − 2℘̂22℘̂11

−6℘̂21℘̂11

−6℘̂2
11

 , R = 3


a6℘̂11 − 2a5℘̂21 + a4℘̂22

a5℘̂11 − 2a4℘̂21 + a3℘̂22

a4℘̂11 − 2a3℘̂21 + a2℘̂22

a3℘̂11 − 2a2℘̂21 + a1℘̂22

a2℘̂11 − 2a1℘̂21 + a0℘̂22

 ,

S = 3


a6a2 − 4a5a3 + 3a24

(a6a1 − 3a5a2 + 2a4a3)/2
(a6a0 − 9a4a2 + 8a23)/6
(a5a0 − 3a4a1 + 2a3a2)/2

a4a0 − 4a3a1 + 3a22

 . (23)

Each differential equation is given in the form:

Pn +Qn +Rn + Sn = 0, (n = 1, 2, · · · , 5), (24)

which provide Eqs.(18)–(22).
Next, we consider the generalized dual transformation of the form:

x′ =
ax− c

−bx+ d
, y′ =

y

(−bx+ d)3
, with ad− bc = 1, (25)

in such a way as such transformation makes the hyperelliptic curve on R to be invariant. Then a′n (n = 1, 2, · · · , 6) are
systematically determined from the relation:

6∑
n=0

6Cnan(bx
′ + a)6−n(dx′ + c)n =

6∑
n=0

6Cna
′
nx

′n. (26)

The explicit expressions of the transformations of an are given in Appendix A. We put a6 = 0 and a′6 = 0 after the
transformation. The transformed Jacobi’s inversion relations are given by:

du′
1 =

dx′
1

y′1
+

dx′
2

y′2
=

(−bx1 + d)dx1

y1
+

(−bx2 + d)dx2

y2
= d du1 − b du2, (27)

du′
2 =

x′
1dx

′
1

y′1
+

x′
2dx

′
2

y′2
=

(ax1 − c)dx1

y1
+

(ax2 − c)dx2

y2
= −c du1 + a du2. (28)

Then we obtain:
∂

∂u′
1

= a
∂

∂u1
+ c

∂

∂u2
,

∂

∂u′
2

= b
∂

∂u1
+ d

∂

∂u2
. (29)

We require that the hyperelliptic curve becomes invariant under the transformation, which implies that the σ function is invariant.
From the invariance of the σ function under the transformation, σ′(u′

1, u
′
2) = σ(u1, u2), the transformed ℘̂ij functions are

given by:

℘̂′
ij(u

′
1, u

′
2) = −∂2 log σ′(u1, u2)

∂u′
i∂u

′
i

= −∂2 log σ(u1, u2)

∂u′
i∂u

′
i

.



EUROPEAN JOURNAL OF MATHEMATICS AND STATISTICS, VOL. 4, NO. 3, JUNE 2023 30

Then ℘̂ij transform in covariant forms,

℘̂′
22 =

∂up

∂u′
2

∂uq

∂u′
2

℘̂pq = d2℘̂22 + 2bd℘̂21 + b2℘̂11, (30)

℘̂′
21 =

∂up

∂u′
2

∂uq

∂u′
1

℘̂pq = cd℘̂22 + (ad+ bc)℘̂21 + ab℘̂11, (31)

℘̂′
11 =

∂up

∂u′
1

∂uq

∂u′
1

℘̂pq = c2℘̂22 + 2ac℘̂21 + a2℘̂11. (32)

A simple rule to obtain the above result is as follows. From Eq.(29), we consider P ′
1 = aP1 + cP2 and P ′

2 = bP1 + dP2.
Making P ′

2
2
= b2P 2

1 + 2bdP1P2 + d2P 2
2 and replace

P ′
2
2 → ℘̂′

22, P 2
2 → ℘̂22, P2P1 → ℘̂21, P 2

1 → ℘̂11,

which gives Eq.(30). This simplified rule is useful to obtain transformed expressions of ℘̂′
ijkℓ by considering P ′

iP
′
jP

′
kP

′
ℓ . Thus

℘̂ijkℓ transform in the covariant form:

℘̂′
ijkℓ =

∂up

∂u′
i

∂uq

∂u′
j

∂ur

∂u′
k

∂us

∂u′
ℓ

℘̂pqrs, (33)

which provides
℘̂′
2222

℘̂′
2221

℘̂′
2211

℘̂′
2111

℘̂′
1111

 =


d4 4bd3 6b2d2 4b3d b4

cd3 (ad+ 3bc)d2 3(ad+ bc)bd (3ad+ bc)b2 ab3

c2d2 2(ad+ bc)cd a2d2 + 4abcd+ b2c2 2(ad+ bc)ab a2b2

c3d (3ad+ bc)c2 3(ad+ bc)ac (ad+ 3bc)a2 a3b
c4 4ac3 6a2c2 4a3c a4



℘̂2222

℘̂2221

℘̂2211

℘̂2111

℘̂1111

 . (34)

We denote this as P′ = MP. Then, by the same M , we can prove Q′ = MQ. We determined kij in Eqs.(9)–(11) in such
a way as R transform in the same way as R′ = MR, so that k22 = 3/2, k21 = 1/2 and k11 = 3/2 can be obtained. Thus,
as we have promised, the constant shift of ℘ij has been determined as Eq.(17). Hence, by using M and kij , we can prove
S′ = MS. We define the total vector T = P + Q + R + S, whole differential equations transform covariantly in the form
T′ = MT. From differential equations T = 0, we obtain T′ = 0, that is, the set of differential equations T = 0 is invariant.

We have shown that differential equations have the Lie group (continuous group) structure; yet an issue is what type of Lie
group structure the differential equations have. To elucidate the problem, we try to find quadratic invariances defined from
some vector X. We here adopt X = P, that is,

X1 = ℘̂2222, X2 = ℘̂2221, X3 = ℘̂2211, X4 = ℘̂2111, X5 = ℘̂1111.

Since the dual transformation is a special case of the generalized transformation, the invariance of the following dual trans-
formations:

℘̂2222 ↔ ℘̂1111, ℘̂2221 ↔ ℘̂2111, ℘̂2211 ↔ ℘̂2211

are necessary. Thus, as the quadratic invariance, we obtain:

I = ℓ1℘̂2222℘̂1111 + ℓ2℘̂2221℘̂2111 + ℓ3℘̂
2
2211 = ℓ1X1X5 + ℓ2X2X4 + ℓ3X

2
3 . (35)

By imposing the invariance under the transformation, the coefficients ℓ1, ℓ2, ℓ3 are determined to be:

I = ℘̂2222℘̂1111 − 4℘̂2221℘̂2111 + 3℘̂2
2211 = X1X5 − 4X2X4 + 3X2

3 = inv.. (36)

Even if we adopt X as any of {P,Q,R,S}, Eq.(36) gives invariants. Thus, we define:

X1 = Y1 + Y4, X2 =
Y5 + Y2

2
, X3 =

Y3√
3
, X4 =

Y5 − Y2

2
, X5 = Y1 − Y4, (37)

and we arrive at the quadratic invariance of the form:

I =
(
Y 2
1 + Y 2

2 + Y 2
3

)
−

(
Y 2
4 + Y 2

5

)
= inv. (38)

Therefore, we conclude that differential equations have the SO(3, 2) ∼=Sp(4,R)/Z2 Lie group structure, which is consistent
with our previous results[24], [25]. At this level, we put a6 = 0 and a′6 = 0, and a′6 = 0 is realized by taking the standard
form of the hyperelliptic curve with a0 = −(6a5d

5 +15a4bd
4 +20a3b

2d3 +15a2b
3d2 +6a1b

4d)/b5. As the invariance of the
transformation is identically satisfied, we obtain the same result even if we put constraints a6 = 0 and a′6 = 0.
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A. The Lie Algebraic Approach to the Constant Shift of ℘ij and the Quadratic Invariant

We consider the following three infinitesimal transformations derived from Eq.(25) [29],

i) x′ = x+ ϵ, (a = 1, b = 0, c = −ϵ, d = 1) (39)
ii) x′ = x+ ϵx, (a = 1 + ϵ/2, b = 0, c = 0, d = 1− ϵ/2) (40)
iii) x′ = x+ ϵx2, (a = 1, b = ϵ, c = 0, d = 1) (41)

where ϵ is an infinitesimal parameter. Denoting δx = x′ − x, each infinitesimal transformations are represented by generators
Q1, Q2 and Q3 as follows:

i) δx = ϵ = [ϵQ1, x], Q1 =
∂

∂x
(42)

ii) δx = ϵx = [ϵQ2, x], Q2 = x
∂

∂x
(43)

iii) δx = ϵx2 = [ϵQ3, x], Q3 = x2 ∂

∂x
(44)

Commutation relations [Q3, Q2] = −Q3, [Q1, Q2] = Q1, [Q3, Q1] = −2Q2 can be modified into the following form:

[iQ3, Q2] = −iQ3, [iQ1, Q2] = iQ1, [iQ3, iQ1] = 2Q2. (45)

On the other hand, the Lie algebra of SO(3), [Ja, Jb] = iϵabcJc, can be rewritten in the form:

[J+, J3] = −J+, [J−, J3] = J−, [J+, J−] = 2J3,

with J± = J1 ± iJ2. Then we have the correspondence:

J+ ↔ iQ3, J− ↔ iQ1, J3 ↔ Q2,

which gives the SO(2,1) Lie algebra structure.
For our purpose to fix kij which are coefficients of the constant shift of ℘ij , and ℓi which are the coefficients of quadratic

invariance, it is sufficient to consider the infinitesimal transformation i):

x′
1 = x1 + ϵ, x′

2 = x2 + ϵ, y′1 = y1, y′2 = y2. (46)

In this case, ai transform as:

a′6 = a6, a′5 = a5 − ϵa6, a′4 = a4 − 2ϵa5, a′3 = a3 − 3ϵa4,

a′2 = a2 − 4ϵa3, a′1 = a1 − 5ϵa2, a′0 = a0 − 6ϵa1. (47)

Transformation laws of ℘̂ij and ℘̂ijkl are determined in the following way:

℘̂′
22 = ℘̂22, ℘̂′

21 = ℘̂21 − ϵ℘̂22, ℘̂′
11 = ℘̂11 − 2ϵ℘̂21, (48)

and

℘̂′
2222 = ℘̂2222, ℘̂′

2221 = ℘̂2221 − ϵ℘̂2222, ℘̂′
2211 = ℘̂2211 − 2ϵ℘̂2221,

℘̂′
2111 = ℘̂2111 − 3ϵ℘̂2211, ℘̂′

1111 = ℘̂1111 − 4ϵ℘̂2111. (49)

We put a6 = a′6 = 0 after the transformation.
In order to determine kij , we can use the infinitesimal transformation of differential equations. The infinitesimal transfor-

mation of Eq.(47) raise the order of differential equations, that is, we obtain Eq.(21), Eq.(20), Eq.(19), and Eq.(18) from
Eq.(22), Eq.(21), Eq.(20), and Eq.(19), respectively. Using this method, we reproduce Eq.(17) [29]. Here, we demonstrate
another method to use the fundamental relation, which generate all differential equation by differentiation, of the form:

℘22(u1, u2)x1x2 + ℘21(u1, u2)(x1 + x2) + ℘11(u1, u2) =
F (x1, x2)− 2y1y2

4(x1 − x2)2
. (50)

This relation is trivially satisfied by using:

℘22(u1, u2) =
λ5

4
(x1 + x2), ℘21(u1, u2) = −λ5

4
x1x2, ℘11(u1, u2) =

F (x1, x2)− 2y1y2
4(x1 − x2)2

.

By using the shifted ℘ij functions of Eqs.(9)–(11), Eq.(50) becomes in the form:

(℘̂22(u1, u2)− k22a4)x1x2 + (℘̂21(u1, u2)− k21a3)(x1 + x2) + (℘̂11(u1, u2)− k11a2)

=
F (x1, x2)− 2y1y2

4(x1 − x2)2
. (51)
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Coefficients kij are determined by the invariance of this fundamental relation under the infinitesimal transformation as follows:

k22 =
3

2
, k21 =

1

2
, k11 =

3

2
,

which reproduces Eq.(17). This is the necessary condition that the fundamental relation is invariant under the finite transfor-
mation.

Next, we determine ℓi by using Eq.(35). By imposing the invariance of Eq.(35) under the infinitesimal transformation, we
obtain:

I → I ′ = ℓ1X1(X5 − 4ϵX4) + ℓ2(X2 − ϵX1)(X4 − 3ϵX3) + ℓ3(X3 − 2ϵX2)
2

= I − ϵ((4ℓ1 + ℓ2)X1X4 + (3ℓ2 + 4ℓ3)X2X3) = I,

which gives ℓ1 : ℓ2 : ℓ3 = 1 : −4 : 3. This is the necessary condition that I is invariant under the finite transformation. Thus,
we obtain:

I = X1X5 − 4X2X4 + 3X2
3 = inv., (52)

which reproduces Eq.(36).

III. CONCLUSION

In the previous study, by directly using differential equations of genus two hyperelliptic ℘ functions, we demonstrated that
the half-period addition formula for genus two hyperelliptic ℘ functions provides the order two Sp(4,R) Lie group structure.
In this study, we have considered the generalized dual transformation for hyperelliptic ℘ functions. By the constant shift of
℘ij functions, we have deduced that differential equations transform covariantly under such transformation. By constructing
the quadratic invariance under such transformation, we have shown that hyperelliptic ℘ functions possess the SO(3,2) ∼=
Sp(4,R)/Z2 Lie group structure for genus two case.

APPENDIX A
THE TRANSFORMATION OF COEFFICIENTS an (n = 0, 1, · · · , 6) IN THE GENUS TWO HYPERELLIPTIC CURVE

1) a′6 = a6d
6 + 6a5bd

5 + 15a4b
2d4 + 20a3b

3d3 + 15a2b
4d2 + 6a1b

5d+ a0b
6, (53)

2) a′5 = a6cd
5 + a5(ad+ 5bc)d4 + 5a4(ad+ 2bc)bd3 + 10a3(ad+ bc)b2d2

+5a2(2ad+ bc)b3d+ a1(5ad+ bc)b4 + a0ab
5 (54)

3) a′4 = a6c
2d4 + 2a5(ad+ 2bc)cd3 + a4(a

2d2 + 8abcd+ 6b2c2)d2 + 4a3(a
2d2 + 3abcd+ b2c2)bd

+a2(6a
2d2 + 8abcd+ b2c2)b2 + 2a1(2ad+ bc)ab3 + a0a

2b4 (55)
4) a′3 = a6c

3d3 + 3a5(ad+ bc)c2d2 + 3a4(a
2d2 + 3abcd+ b2c2)cd

+a3(a
3d3 + 9a2bcd2 + 9ab2c2d+ b3c3) + 3a2(a

2d2 + 3abcd+ b2c2)ab

+3a1(ad+ bc)a2b2 + a0a
3b3 (56)

5) a′2 = a6c
4d2 + 2a5(2ad+ bc)c3d+ a4(6a

2d2 + 8abcd+ b2c2)c2 + 4a3(a
2d2 + 3abcd+ b2c2)ac

+a2(a
2d2 + 8abcd+ 6b2c2)a2 + 2a1(ad+ 2bc)a3b+ a0a

4b2 (57)
6) a′1 = a6c

5d+ a5(5ad+ bc)c4 + 5a4(2ad+ bc)ac3 + 10a3(ad+ bc)a2c2

+5a2(ad+ 2bc)a3c+ a1(ad+ 5bc)a4 + a0a
5b (58)

7) a′0 = a6c
6 + 6a5ac

5 + 15a4a
2c4 + 20a3a

3c3 + 15a2a
4c2 + 6a1a

5c+ a0a
6. (59)

We put a6 = 0 and a′6 = 0 after the transformation. For example, we can realize a′6 = 0 by taking the standard form of the
hyperelliptic curve with a0 = −(6a5d

5 + 15a4bd
4 + 20a3b

2d3 + 15a2b
3d2 + 6a1b

4d)/b5.

REFERENCES

[1] Gardner C.S, Greene J.M, Kruskal M.D, Miura R.M. Method for Solving the Korteweg-de Vries Equation. Phys. Rev. Lett., 1967; 19: 1095-1097.
[2] Lax P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Commun. Pure and Appl. Math., 1968; 21: 467-490.
[3] Zakharov V.E, Shabat A.B. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media. Sov.

Phys. JETP, 1972; 34: 62-69.
[4] Ablowitz M.J, Kaup D.J, Newell A.C, Segur H. Nonlinear-evolution Equations of Physical Significance. Phys. Rev. Lett., 1973; 31: 125-127.
[5] Bianchi L. Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante. Ann. Scuola Norm. Sup. Pisa (1), 1879; 2: 285-341.
[6] Hermann R. Pseudopotentials of Estabrook and Wahlquist, the Geometry of Solitons, and the Theory of Connections. Phys. Rev. Lett., 1976; 36: 835-836.
[7] Sasaki R. Soliton Equation and Pseudospherical Surfaces. Nucl. Phys., 1979; B154: 343-357.
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