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Abstract — The well-known SIR models have been around for many years. Under some suitable assumptions, 
the models provide information about when the epidemic occurs and when it doesn’t. The models can be 
restructured by incorporating birth & death rate, portion of population vaccinated, carrying capacity of 
population, saturation rate, growth rate, time delay and immunization to analyze the outcome mathematically. In 
this regard several SIR models including birth, death and immunization as well as bifurcation analysis associated 
with disease free and epidemic equilibrium have been studied. Findings of this research are with some suitable 
assumptions how these incorporated parameters as well as bifurcation analysis can play an important role in 
determining epidemic status in the society in more reliable and convenient way. 
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I. INTRODUCTION  

Based on some mathematical assumptions, it is known that epidemics can be modeled mathematically in 
order to study the severity and prevention mechanism. This model (SIR) is used in epidemiology to compute 
the number of susceptible, infected, and recovered people in a population at any time. It can be used to 
explain the change in the number of people needing medical attention during an epidemic. The whole 
population is divided into three classes, S, the number of susceptible, I, the number of infected and R, the 
number of recovered during an epidemic. This model assumes that the total population remains the same 
with closed demography meaning that there is no birth and no natural death. Any disease related death, 
however, can be included in R. We study the basic SIR model with some reasonable assumptions. Then we 
include herd immunity, birth and death into the model. The constant vaccination at birth is also considered. 
The ultimate goal is to model the issue of saturated susceptible population, the time delay of infection to 
become infectious, the stability of equilibrium solutions and associated bifurcation. 

Definition 1: Susceptible individuals are individuals that have never been infected and they are able to 
catch the disease. Once they have it, they move into the infected compartment. Infected individuals can 
spread the disease to susceptible individuals. Recovered individuals in the recovered compartment are 
assumed to be immune for life. 

Let S (t) be the number of susceptible individuals I (t) be the number of infected individuals and let R (t) 
be the number of recovered individuals at time t respectively. It is also assumed that S + I + R = N. Also 
we normalize this sum by dividing each of the variables by N. We still denote the new variables by the 
same letters S, I and R. 

 

II. THE SIR MODELS 

SIR models have been around for many years, for example [1]-[5] and the references therein. The first 
one was introduced and published in 1927, in “Contribution to the Mathematical Theory of Epidemics”, 
written by William Kermack and Anderson McKendrick. They introduced the important compartments, 
which make up the SIR model, S- susceptible, I - infected and R - recovered. They searched for a 
mathematical answer as to when the epidemic would terminate and observed that, in general, whenever the 
population of susceptible individuals falls below a threshold value, which depends on several parameters, 
the epidemic terminates [6], [7]. 
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III. THE BASIC MODEL 
The population is fixed so S + I + R = 1. The disease spreads through the interaction of susceptible and 

infected [8]-[11]. We assume that only a fraction of this interaction causes the disease to pass from an 
individual (I) to a susceptible individual (S) so the rate of change of S is proportional to the product of S 
and I [3]. We assume that the individuals recover at a rate of β so the period of infection is 1 β days. The 
only way a person can leave the susceptible group is to become infected. The only way a person can leave 
the infected group is to recover. Once a person is recovered, the person is no longer susceptible and is 
immune [12] – [15]. Age, sex, race and social status do not affect the probability of a person being affected. 
There is no inherited immunity at this time. The people of the population mix homogeneously. Based on 
the above assumptions the differential equations governing the disease can be modeled as: 

 

                                                                                                                                          (1)  

 
Remark:  Since the total population is assumed to be constant, the third equation can be derived from the 

first two. Basically we study the first two in detail. It turns out that the epidemic occurs if  it doesn’t 

if . So for the epidemic to occur we have to have  implying . For the epidemic to 

terminate the rate of change of I has to be negative, this implies that   

Contact Number: Contact number is defined as the average number of adequate contacts of a typical 
infective during the infection period. It is denoted by . Tree diagram for  is as follows: 

 

 
Fig. 1. Tree diagram for the contact number . 

 

 
Fig. 2. The phase portrait for the classical SIR epidemic model with contact number . 

 
Definition 2 (Basic Reproductive Number): The basic reproductive number  (the average number of 

persons infected by one case in a totally susceptible population in absence of interventions aimed at 

controlling the infection). Since  initially, the ratio .  

This is one of the most important parameters in the SIR modeling of any epidemic.  is especially 
important in this case as it will inform one as to when an epidemic is in progress. So if  an epidemic 
will occur and if   there will be no epidemic. The values of  are known for various diseases. For 
example for Covid-19, it is reported to be 1.3−1.6 (in PNG) in (1) The first two equations can be solved for 
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I and S as in (3) The variation of I versus S can be seen from the figure provided (Figure 2). The solutions of 
I vs. S can be written as (2). 
 

                                                                                                                              (2) 

 
The graphs of this equation (2) are shown for different values of . The system of equations can be 

solved for several values of the parameters. 
 

 
Fig. 3. The graphs of ‘I’ versus ‘S’ for different values of for Covid-19 in different region of PNG. Data collected from PNG 

National Department of Health (NDOH) and World Health Organization (WHO). 
 

IV. HERD IMMUNITY 

For this portion of the model we use p to be the proportion of susceptible population that is immunized 
before the outbreak of an epidemic and assume the above mentioned conditions, new equations governing 
the disease can be written as  

 

                                                                                                                                                                           (3) 

 
An outbreak of the epidemic mathematically means that 
 

  

 
Note: The value of  is approx. 1.6 (in PNG) for Covid-19. Thus the above inequalities says that at least 

38% need to be immunized in order to contain the disease. 
 

V. SIR WITH BIRTH AND DEATH 

As a modification to the SIR model we introduce birth and death. We assume that all death is natural. The 
variable m is used to represent a constant rate of birth and death. The basic reproduction number is now 

given by  . Thus the new equations with the consideration of birth and death are: 
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                                                                                                                 (4) 

                                                                                                                               (5) 

 
The system of equations has now two equilibrium solutions. The disease-free equilibrium  

and the epidemic equilibrium  

The eigenvalues of the Jacobian matrix reveal the stability of these equilibrium solutions. The Jacobian 
matrices are computed as follows: 

 

,   
 
The eigenvalues of  are  and . They are both negative if   

In this case the eigenvalues of the Jacobian   are both negative. So the disease free equilibrium is 

locally stable and the epidemic equilibrium is unstable. Likewise, if  the eigenvalues of  are of 

opposite sign and that of are both negative. So the epidemic equilibrium is locally stable and the 

disease free equilibrium is unstable. Authors [4] have mentioned that these locally stable equilibrium are 
global as well. The value of  thus provides the bifurcation point for the system. 

 

VI. CONSTANT VACCINATION AT BIRTH 

For this particular model we introduce certain assumptions that involve a constant vaccination for the 
newly born, which will enter our population. A proportion p of the new born population has the constant 
vaccination, while others will enter the population susceptible to infection. We still assume that the 
population is constant. 

 

. The number of infected is still represented as:  

It has two equilibrium solutions. The disease-free equilibrium  and the epidemic 

equilibrium  The Jacobian at these equilibrium solutions are computed to 

be ,  

It can be seen from the eigenvalues of these matrices that if,  the disease-free equilibrium is 
stable while the epidemic equilibrium is unstable. If,  then the disease-free equilibrium is unstable 
and the epidemic equilibrium is stable. It follows that when,  the bifurcation occurs. This value 

of p is called a critical vaccination. So, the critical vaccination, denoted by,  is given by   

Example. The value of  for Measles is known to be 16−18. So the critical vaccination for this 
epidemic turns out to be 94.4%. If the new born are vaccinated at a rate higher than 94.4%, then the 
population will move towards the disease free equilibrium. 

 

VII. SATURATED SUSCEPTIBLE POPULATION 

In the case that the birth and death rate are not constant. There are specific assumptions that must be taken 
into account. These assumptions are that susceptible individuals,  are born at a rate  which is 
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a function of the densities of the susceptible, infected, and recovered hosts. Susceptible are infected at a given 
rate given by the product of the densities of susceptible and infected hosts.  

 

                                                                                                                    
 

The number of infected is still represented as:    

When both host types are well mixed and encounters are random, it is known as mass action kinetics 
derived from chemical kinetics. Infected hosts recover at a rate . Susceptible and recovered hosts die at a 
rate , which describes the natural death rate due to causes unrelated to the infection. Infected hosts die at a 
rate, which includes both natural death and disease induced death. It has two equilibrium solutions. The 

disease-free equilibrium,  and the epidemic equilibrium,  

Where  is the reproduction number which denotes the number of individuals infected by a single 

infected individual placed in a totally susceptible population. The Jacobian at these equilibrium solutions are 
computed to be 

 

,  
                    

VIII. MATURATION DELAY 

The delayed SIR Epidemic Model makes the assumption that the people in the susceptible group are 
infectious and carry the disease but only after a certain period of time are they infected.  

 

,   
 
For this project the two equilibrium solutions have been set to 0 and 1 to see if there is an epidemic or a 

disease free occurrence. We are able to decipher between the two by finding the infection free equilibrium 
 

,  

 
In conclusion, we see that over a certain period the population is susceptible and infectious, but not 

everyone is infected at one specific time period. It takes a certain period of time for infection to circulate 
throughout a population. 

 

IX. CONCLUSION 

In conclusion, we reviewed, analyzed, and discussed the continuous SIR epidemic model. In the basic 
SIR model only rate of infection and recovery rate were imposed, whereas in the restructure model with 
respect to different reliable important factors say, basic reproduction number , portion of population 
vaccinated , carrying capacity , constant birth and death rate , saturation rate  and growth 
rate  have been incorporated in order to determine the bifurcation point as well as the status of the 
epidemic in the society in a more reliable and convenient way and as a result that will help the society to 
adopt the necessary precautionary measures well in advance against the outbreak and save the community 
from the devastation. 
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