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On Global Stability of Disease-Free Equilibrium in
Epidemiological Models

Tunde Tajudeen Yusuf

Abstract—This paper considers the problem of constructing
appropriate Lyapunov function for establishing the global sta-
bility of a disease-free equilibrium in epidemiological models.
A generalised algorithm is proposed and it is tested for some
selected epidemiological models. Experience from the application
of the algorithm on test examples shows that the algorithm is
easy to use, less cumbersome, and yielded the desired result,
particularly in models with homogeneous population. Thus, the
proposed algorithm provides a direct approach for establishing
global stability of disease-free equilibrium.

Index Terms—Disease-free equilibrium, Basic reproduction
number, Lyapunov function, Lasalle’s invariance principle,
Global asymptotic stability.

I. INTRODUCTION

In mathematical Epidemiology, it is the norm to subject
proposed model to qualitative analysis. An important
component of the qualitative analysis is to determine the
model equilibrium solutions and unveil the criteria for the
stability of each of these equilibrium solutions. It is pertinent
to mention that the equilibrium solutions are the possible
scenarios that could emerge from the epidemiological situation
being modelled while their stability helps in determining
which of the scenarios will eventually play-out whenever the
specified conditions are met.

Usually, epidemiological models have the disease-free
equilibrium and the disease-endemic equilibrium solutions.
Several authors have adopted different approaches in
establishing the conditions for global stability of each of
these equilibrium solutions (See [5], [9], [10]). However,
majority of the authors often used the Lyapunov function
approach in conjunction with LaSalle’s invariance principle to
establish the condition(s) for the global asymptotic stability
of their model equilibrium solutions [6], [8]. Though,
there seems not to be any clearly definitive approach for
constructing the Lyapunov function that would yield the
desired result [11]. Most times, the approach adopted in
many of the research works is a ” trial and error ” one. Thus,
making the Lyapunov function approach a cumbersome and
non-definitive exercise. For instance, authors like Asamoah
et al and Ullah et al used the Lyapunov function approach
with different construct of the Lyapunov function candidates,
though they both obtained the desired results [2], [3]. More
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often than not, the relative appropriateness of the adopted
Lyapunov function candidate determines the ease of showing
the global stability of the equilibrium solutions.

Here, a definitive approach for constructing the Lyapunov
function with respect to a disease-free equilibrium of epi-
demiological models is proposed. Test examples are used to
illustrate that the algorithm yielded the desired result while
limitations of the applications of the proposed algorithms are
equally specified.

II. PROPOSED ALGORITHM

The proposed algorithm is as follows: i.
1) Given an epidemiological model, determine the model

equilibriums solutions and identify which of the equi-
librium solutions is the disease-free equilibrium;

2) Derive the model basis reproduction number with re-
spect to disease under consideration using next genera-
tion matrix approach (See [4] );

3) Construct the required Lyapunov function as a linear
combination of all the model infected compartments;

4) Thus, define the Lyapunov function as

V(t, S1, ..., Sn, I1, ..., In, R1, ...., Rn) =

n∑
i=1

CiIi; (1)

5) Differentiate V(.) with respect to time to obtain

dV
dt

=

n∑
i=1

Ci
dIi
dt

; (2)

6) Substitute for each
dIi
dt

as defined in the model being
considered;

7) Substitute the disease-free equilibrium variable value for
each of the non-infected compartments in (2) to yield :

dV
dt
≤

n∑
i=1

Ci
dIi
dt

; (3)

8) Collect like terms in RHS of the resulting inequality in
(3) with each of its terms expressed in terms of each of
the infected compartments;

9) Choose Ci appropriately such that the RHS in (3) has
at least one of its terms expressed as a function of R0

while the other remaining terms vanish;
10) Establish that the resulting derivative of the Lyapunov

function (3) is usually less than or equal zero whenever
R0 < 1;
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11) Based on Lassalle’s Invariance principle [8], conclude
that the disease-free equilibrium is global asymptotically
stable whenever the R0 < 1.

III. TEST EXAMPLES

A. An SIR model

Let us consider an SIR epidemiological model for the spread
of Chicken pox with the availability of potent vaccine as stated
below:

dS

dt
= Λ− βSI

N − (ρ+ µ)S,

dI

dt
= βSI

N − (γ + δ + µ)I,

dR

dt
= ρS + γI − µ.

(4)

The model ((4)) depicts the transmission dynamics of chicken
pox within a variable size human population in the presence
of a potent vaccine. Thus, the model divides the population
of interest into three mutually exclusive compartments,
namely : S(t) - Susceptibles, I(t) - Infectives , and R(t) -
Recovered; with S(t), I(t), R(t) representing the number of
individuals in each of the respective compartments per unit
time., while all the model parameter values are positive and
N(t) = S(t) + I(t) +R(t) ≤ N∗ = Λ

µ .

The disease-free equilibrium solution is

E1 =

(
S∗ =

Λ

(ρ+ µ)
, I∗ = 0, R∗ =

Λρ

µ(ρ+ µ)

)
and basic reproduction number

R0 =
βµ

(ρ+ µ)(γ + δ + µ)
(5)

Theorem 3.1: The model (4) has the disease free equilibrium
(E1) whenever R0 < 1 and it is globally asymptotically stable
(GAS).

proof 3.2: Let us consider a Lyapunov function V1 of the
form below:

V1(t, S, I, R) = C1I (6)

On the differentiation of V with respect to t in (6), we have :

dV1

dt
= C1I

′,

= C1(βSIN − (γ + δ + µ)I)

= C1(βSN − (γ + δ + µ))I

≤ C1( βµ
ρ+µ − (γ + δ + µ))I

≤ C1(γ + δ + µ)
(

βµ
(ρ+µ)(γ+δ+µ) − 1

)
I,

≤ C1(γ + δ + µ)(R0 − 1)I,
≤ (R0 − 1)I, C1 = 1

(γ+δ+µ) .

(7)

it is imperative to note that V ′1 = 0 only when I = 0.
Moreover, the substitution of I = 0 into the model system
of equations shows that S → Λ

(ρ+µ) and R → Λρ
µ(ρ+µ) as

t → ∞. Based on LaSalle’s invariance principle [8], E1 is
globally asymptotically stable whenever R0 < 1. �

B. Model for Meningitis disease transmission dynamics

Consider the model for the spread of Meningococcal Menin-
gitis disease below:

dS

dt
= Λ− βS(I1+I2)

N − (u1 + µ)S + σR

dI1
dt

= βS(I1+I2)
N − (ρ+ γ + µ)I1

dI2
dt

= ρI1 − (u2 + µ+ δ)I2

dR

dt
= u1S + γI1 + u2I2 − (σ + µ)R

(8)

It salient to mention that the model (8) represents the dynamics
of the spread of Meningitis disease among human population
where effective treatment given to patients and vaccination of
the susceptibles only confer temporary immunity. Hence, this
model divides the population of interest into four mutually
exclusive compartments, namely : S(t) - Susceptibles, I1(t) -
Carriers, I2(t) - Infected individuals , and R(t) - Recovered
individuals; with S(t), I1(t), I2(t), R(t) representing the
number of individuals in each of the respective compartments
per unit time., while all the model parameter values are
positive and N(t) = S(t) + I1(t) + I2(t) +R(t) .

In this case, both disease compartments I1(t), and I2(t) are
infectious while the model disease-free equilibrium (E2) and
basic reproduction number (R0) are as respectively stated
below:

The disease-free equilibrium solution:

E2 =
(
S∗ = Λ(σ+µ)

µ(u1+σ+µ) , I
∗
1 = 0, I∗2 = 0, R∗ = Λu1

µ(u1+σ+µ)

)
and basic reproduction number

R0 = β(σ+µ)
(u1+σ+µ)(ρ+γ+µ) + β(σ+µ)ρ

(u1+σ+µ)(ρ+γ+µ)(u2+µ+δ) (9)

So, in order to show that the model disease-free equilibrium
is GAS, we adopt the proposed algorithm as below:

Theorem 3.3: The model ((8)) has the disease free equilib-
rium (E2) whenever R0 < 1 and it is globally asymptotically
stable (GAS).

proof 3.4: Suppose R0 < 1, then the model has only
the disease-free equilibrium (E2) as its only equilibrium. So,
we only need to show that (E2) is GAS. Let us consider a
Lyapunov function V2 of the form below:

V2(t, S, I1, I2, R) = C1I1 + C2I2. (10)
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On the differentiation of V2 with respect to t in (10), we have:
dV2

dt
= C1I

′
1 + C2I

′
2

= C1(βS(I1+I2)
N − (ρ+ γ + µ)I1)

+ C2(ρI1 − (u2 + µ+ δ)I2),

= (C1βS
N + C2ρ− C1(ρ+ γ + µ))I1

+ (C1βS
N − C2(u2 + µ+ δ))I2,

≤ (C1β(σ+µ)
u1+σ+µ + C2ρ− C1(ρ+ γ + µ))I1

+(C1β(σ+µ)
u1+σ+µ − C2(u2 + µ+ δ))I2

Taking S = S∗ = Λ(σ+µ)
µ(u1+σ+µ) , N = N∗ = Λ

µ ,

≤
(
β(σ+µ)
u1+σ+µ + βρ(σ+µ)

(u1+σ+µ)(u2+µ+δ) − (ρ+ γ + µ)
)
I1

+
(
β(σ+µ)
u1+σ+µ −

β(σ+µ)
u1+σ+µ

)
I2,

where C1 = 1, C2 = β(σ+µ)
(u1+σ+µ)(u2+µ+δ) ,

≤ (ρ+ γ + µ)
(

β(σ+µ)
(u1+σ+µ)(ρ+γ+µ)

)
I1 +

(ρ+ γ + µ)
(

βρ(σ+µ)
(ρ+γ+µ)(u1+σ+µ)(u2+µ+δ) − 1

)
I1,

≤ (ρ+ γ + µ)(R0 − 1)I1.
(11)

In view of the foregoing, it is imperative to note that V ′2 = 0
only when I1 = 0. Moreover, the substitution of I1 = 0,
and I2 = 0 into the model system of equations gives
S → Λ(σ+µ)

µ(u1+σ+µ) and R → Λu1

µ(u1+σ+µ) as t → ∞. Based
on LaSalle’s invariance principle [8], E2 is globally asymptot-
ically stable whenever R0 < 1 �

C. Model for Hepatitis B Virus (HBV) disease transmission
dynamics [7]

Consider the model for the spread of HBV disease below:

dS

dt
= Λ− βSI1

N − βSI2
N − (ν + µ)S

dI1
dt

= βSI1
N + βSI2

N − (ρ1 + γ + µ)I1

dI2
dt

= ρ1I1 − (ρ2 + µ)I2

dI3
dt

= ρ2I2 − (µ+ δ)I3

dR

dt
= νS + γI1 − µR

It is important to note that this model ((12)) captures
the dynamical spread of HBV disease within the human

population in a situation where there is effective vaccine
which confers permanent immunity on recipients. So, the
model divides the population of interest into four mutually
exclusive compartments, namely : S(t) - Susceptibles, I1(t)
- Exposed individuals, I2(t) - Acute Infected individuals,
I3(t) - Chronic Infected individuals , and R(t) - Recovered
individuals; with S(t), I1(t), I2(t), R(t) representing the
number of individuals in each of the respective compartments
per unit time., while all the model parameter values are
positive and N(t) = S(t) + I1(t) + I2(t) + I3(t) +R(t) .

In this case, the Exposed compartment I1(t) is not infectious
while the other two disease compartments I2(t), and I3(t) are
both infectious while the model disease-free equilibrium (E3)
and basic reproduction number (R0) are as respectively stated
below:

The disease-free equilibrium solution:

E3 =

(
S∗ =

Λ

(ν + µ)
, I∗1 = 0, I∗2 = 0, I∗3 = 0, R∗ =

Λν

µ(ν + µ)

)
;

and basic reproduction number

R0 = β1ρ1µ
(ν+µ)(ρ1+γ+µ)(ρ2+µ) + β2ρ1ρ2µ

(ν+µ)(ρ1+γ+µ)(δ+µ)(ρ2+µ) (12)

So, in order to show that the model disease-free equilibrium
is GAS, we adopt the proposed algorithm as below:

Theorem 3.5: The model 12 has the disease free equilibrium
(E3) whenever R0 < 1 and it is globally asymptotically stable
(GAS).

proof 3.6: Suppose R0 < 1, then the model has only
the disease-free equilibrium (E3) as its only equilibrium. So,
we only need to show that (E3) is GAS. Let us consider a
Lyapunov function V3 of the form below:

V3(t, S, I1, I2, I3, R) = C1I1 + C2I2 + C3I3. (13)

On the differentiation of V3 with respect to t in (13), we have
:
dV3

dt
= C1I

′
1 + C2I

′
2 + C3I

′
3,

= C1(β1SI2
N + β2SI3

N − (γ + ρ1 + µ)I1)
+ C2(ρ1I1 − (ρ2 + µ)I2) + C3(ρ2I2 − (µ+ δ)I3),

≤ C1(β1µI2
ν+µ + β2µI3

ν+µ − (γ + ρ1 + µ)I1
+ C2(ρ1I1 − (ρ2 + µ)I2) + C3(ρ2I2 − (µ+ δ)I3).

(14)
Re-arranging the preceding inequality (14) in terms of
I1, I2, and I3, we obtain

dV3

dt
≤ (C2ρ1 − C1(γ + ρ1 + µ)) I1

+

(
C1β1µ

ν + µ
+ C3ρ2 − C2(ρ2 + µ)

)
I2 +(

C1β2µ

ν + µ
− C3(µ+ δ)

)
I3.

(15)

Thus, substituting C1 = ρ1
γ+ρ1+µ , C2 = 1,

and β2µρ1
(ν+µ)(µ+δ)(γ+ρ1+µ) into (15) yields :
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dV3

dt
≤
(
ρ1 − (γ + ρ1 + µ). ρ1

γ+ρ1+µ

)
I1

+
(

β1µρ1
(ν+µ)(γ+ρ1+µ) + β2µρ1ρ2

(ν+µ)(µ+δ)(γ+ρ1+µ)

)
I2

− (ρ2 + µ) I2

+ ( β2µρ1
(ν+µ)(γ+ρ1+µ) −

β2µρ1(µ+δ)
(ν+µ)(µ+δ)(γ+ρ1+µ) )I3,

≤ (ρ2 + µ)(R0 − 1)I2
(16)

Based on the inequality (16), it is worthy to note that V ′3 = 0
only when I2 = 0. Also, the substitution of I1 = 0, I2 = 0 and
I3 = 0 into the model system of equations makes S → Λ

(ν+µ)

and R→ Λν
µ(ν+µ) as t→∞. So, E3 is globally asymptotically

stable whenever R0 < 1; premised on LaSalle’s invariance
principle [8]. �.

D. Model for Coronavirus disease Transmission dynamics

Let us consider the Covid-19 disease transmission model as
given below:

dS

dt
= Λ + ωR− (1− u1)(β1I1 + β2I3 + β3I2)S − µS,

dI1
dt

= (1− u1)(β1I1 + β2I3 + β3I2)S − u2I1 − ρI1 − µI1,

dI2
dt

= ρI1 − u3I2 − γI2 − (µ+ δ2)I2,

dI3
dt

= u2I1 + u3I2 − u4I3 − (µ+ δ1)I3,

dR

dt
= γI2 + u4I3 − ωR− µR

(17)
It worth mentioning that the model ((17)) describes the dynam-
ics of Covid-19 disease spread with the impacts of the non-
pharmaceutical control measures. So, the human population
under consideration is divided into five mutually exclusive
compartments, namely Susceptible class S(t), Asymptotically
Infected I1(t), asymptotically Infected I2(t) , Hospitalized
under isolation I3(t), and Recovered R(t) compartments while
all the model parameters are positive. Note, for this disease
compartments I1(t), I2(t), and I3(t) are all infectious while
the model disease-free equilibrium (E3) and basic reproduction
number (R0) are as respectively state below:

The disease-free equilibrium solution:

E4 =

(
S∗ =

Λ

µ
, I∗1 = 0, I∗2 = 0, I∗3 = 0, R∗ = 0

)
;

and basic reproduction number

R0 =
Λ(1− u1)

µ

(
β1

x
+
β2(ρu3 + yu2)

xyz
+
β3ρ

xy

)
.

where x = µ+ ρ+u2; y = µ+ γ+ δ2 +u3; z = µ+ δ1 +u4.

Theorem 3.7: The model (17) has the disease free equilib-
rium (E4) as its only equilibrium solution whenever R0 < 1
and it is globally asymptotically stable (GAS).

proof 3.8: Suppose R0 < 1, then the model has only
the disease-free equilibrium (E4) as its only equilibrium. So,
we only need to show that (E4) is GAS. Let us consider a
Lyapunov function V4 of the form below:

V4(t, S, I1, I2, I3, R) = C1I1 + C2I2 + C3I3. (18)

On the differentiation of V with respect to t in (18), we have:

dV4

dt
= C1I

′
1 + C2I

′
2 + C3I

′
3

= C1((1− u1)(β1I1 + β2I3 + β3I2)S − u2I1 − ρI1 − µI1)

+ C2(ρI1 − u3I2 − γI2 − (µ+ δ2)I2)

+ C3(u2I1 + u3I2 − u4I3 − (µ+ δ1)I3),

≤ C1((1− u1)(β1I1 + β2I3 + β3I2)(Λ
µ )− u2I1 − ρI1 − µI1)

+ C2(ρI1 − u3I2 − γI2 − (µ+ δ2)I2)

+ C3(u2I1 + u3I2 − u4I3 − (µ+ δ1)I3);

Taking S = S∗ = Λ
µ ,

≤
(
C1(1− u1)(Λ

µ )β1 + C2ρ+ C3u2 − C1(µ+ ρ+ u2)
)
I1

+
(
C1(1− u1)(Λ

µ )β2 − C3(µ+ u4 + δ1)
)
I3

+
(
C1(1− u1)(Λ

µ )β3 + C3u3 − C2(µ+ γ + u3 + δ2)
)
I2,

≤ (R0 − 1)I1,

where C1 = 1, C2 = Λ(1−u1)(β3(u4+δ1+µ)+β2u3)
µ(µ+u4+δ1)(µ+γ+u3+δ2) ,

and C3 = Λ(1−u1)β2

µ(µ+u4+δ1)

(19)
Thus, it is imperative to note that V ′4 = 0 only when

I1 = 0. Moreover, the substitution of I1 = 0, I2 = 0, I3 =
0, and R = 0 into the model system of equations indicates
that S → Λ

µ as t→∞. Based on LaSalle’s invariance principle
[8], E4 is globally asymptotically stable whenever R0 < 1.
�

E. Model for HIV and HBV Co-epidemics [12]

Consider a model for HIV and HBV co-epidemics in popu-
lation subdivided into four mutually exclusive compartments,
namely Susceptible class S(t), the HBV Infected only class
IB(t), HIV infected only class IH(t), and the HIV/HBV
co-infected class IC(t) while all the model parameters are
positive. The dynamics of the spread of the two diseases is as
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given below:

dS

dt
= Π− γ(IB + IC) SN − τ(IH + IC) SN − µS,

dIB
dt

= γ(IB + IC) SN − τ(IH + IC) IBN − (µ+ µB)IB ,

dIH
dt

= τ(IH + IC) SN − γ(IB + IC) IHN − (µ+ µH)IH ,

dIC
dt

= γ(IB + IC) IHN + τ(IH + IC) IBN − (µ+ µB + µH)IC
(20)

Here, the model (20) describes the dynamics of the spread
of two diseases (HIV and HBV) which share a common
transmission routes; thus raising the likelihood of individuals
getting infected with the two diseases. Considering the fact
that HIV and HBV have no permanent cure for now, the
continuous co-infection of individuals with the two diseases
could eventually result into a co-epidemics if timely and
effective control measures are not put in place.

Theorem 3.9: The disease free equilibrium E5 = (Π
µ , 0, 0, 0)

is globally asymptotically stable, whenever R0 < 1.

proof 3.10: Let us consider a Lyapunov function of the form.

V5(S, IB , IH , IC) = C1IB + C2IH + C3IC (21)

Differentiating V5(S, IB , IH , IC) with respect to t gives:

dV5

dt
= C1I

′
B + C2I

′
H + C3I

′
C (22)

Substituting for I ′B , I ′H , and I ′C in equation (22) yields

dV5

dt
= C1

[
γ(IB + IC) SN − τ(IH + IC) IBN − (µ+ µB)IB

]
+C2

[
τ(IH + IC) SN − γ(IB + IC) IHN − (µ+ µH)IH

]
+C3

[
γ(IB + IC) IHN + τ(IH + IC) IBN

−(µ+ µB + µH)IC)]
(23)

At the disease free equilibrium E5 =
[

Π
µ , 0, 0, 0

]
, with

R0 = max
[
RB = γ

µ+µB
,RH = τ

µ+µH

]
, while γ

µ+µB+µH
<

γ
µ+µB

, and τ
µ+µB+µH

< τ
µ+µH

; equation (23) can be simpli-
fied as below :
dV5

dt
≤ C1 [γIB + γIC − (µ+ µB)IB ]

+C2 [τIH + τIC − (µ+ µH)IH ]

−C3 [µ+ µB + µH ] IC ,
≤ C1 [γ − (µ+ µB)] IB + C2 [τ − (µ+ µH)] IH

+ [C1γ + C2τ − C3(µ+ µB + µH)] IC ,

≤ C1(µ+ µB) [RB − 1] IB + C2(µ+ µH) [RH − 1] IH

(µ+ µB + µH)
[

C1γ
µ+µB+µH

+ C2τ
µ+µB+µH

− C3

]
IC

(24)

Substituting C1 = C2 = 1, C3 = γ+τ
µ+µB+µH

and R0 =

max
[
RB = γ

µ+µB
,RH = γ

µ+µH

]
in (24) yields

dV5

dt
≤ (µ+ µB) [R0 − 1] IB + (µ+ µH) [R0 − 1] IH ,

≤ 0.
(25)

It is important to note that V ′5 = 0 only at the disease-free
equilibrium E4, otherwise it is negative. Therefore, it follows
from Lasalle’s invariance principle that all solutions of the
model equations converges to the E5 as t → ∞ whenever
R0 < 1. Hence, E5 is globally asymptotically stable whenever
R0 < 1. �

IV. CONCLUDING REMARKS

In this paper, an algorithm for establishing the global
stability of a disease-free equilibrium with respect to epidemi-
ological models is developed. The algorithm is tested using
some selected epidemiological models. The algorithm works
perfectly for the series of models considered. Based on the
experience from the test examples, it can be concluded that the
proposed algorithm works fine for the purpose for which it was
designed. It is pretty easy to use and understand with minimal
ambiguity when compared with other approaches of achieving
same goal. It is pertinent to mention that whenever R0 = 1,
the disease-free equilibrium is only neutrally stable. However,
the application of this algorithm in vector-host models may not
be that straight forward as it is in models for one homogeneous
population. In such instances, there would obviously be need
for additional manipulation of the proposed algorithm in order
to obtain the desired result. Worse still, this algorithm does not
work for showing global stability of the endemic equilibrium
solution. Thus, further research would be necessary in order
to extend this algorithm to cover these additional instances.
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