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Abstract —In this paper, we obtain the Sumudu transform of generalized composite fractional 
derivative and some lemmas related to inverse Sumudu transform. Further, we find solution of 
nonlinear reaction diffusion equation with generalized composite fractional derivative by 
applying the Sumudu and Fourier transforms. 
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I. INTRODUCTION  

Reaction diffusion equations have found applications in various branches of science and technology [1]-
[3]. The classical reaction diffusion equation is given by [4] 
 

 !"
!#
= 𝐷 !!"

!$!
+ 𝜃 ⋅ 𝑋(𝑁), (1) 

 
where 𝐷 is diffusion coefficient and 𝑋(𝑁) a nonlinear function representing reaction kinetics. 
A generalization of (1) was proposed by [5] and is given as  

 
 !!"

!#!
+ 𝜉 ⋅ !"

!#
= 𝜒% !

!"
!$!

+ 𝜂%𝑁(𝑥, 𝑡). (2) 
 

Further, [6] gave another generalization of reaction diffusion equation with the fractional derivatives as  
 

 	&𝒟#'𝑁(𝑥, 𝑡) + 𝜉 ⋅& 𝒟#
(𝑁(𝑥, 𝑡) = 𝜒%)*𝒟$

+𝑁(𝑥, 𝑡) + 𝜂%𝑁(𝑥, 𝑡) + 𝜓(𝑥, 𝑡), (3) 
 

where 𝛼 > 𝛽, 𝜓(𝑥, 𝑡) represents the nonlinearity in the system and 𝜉 demonstrates the nonlinearity of 
the system. Recently, several authors have studied reaction diffusion equation with fractional deriavtives 
[7]-[9]. 

The fractional derivatives are continuously showing their potential in the modeling of real world 
problems. This is leading to continuous development of fractional derivatives. Reference [10] defined a 
fractional derivative which was composite of Riemann-Liouville and caputo fractional derivative of same 
order [11], it thus possessed properties of both the derivatives with additional advantage due to their 
composition. Reference [12] further defined a composition of these derivatives, allowing different 
fractional orders of Riemann-Liouville and Caputo fractional derivatives, thus widening the application of 
this generalized composite fractional derivative (GCFD). In this paper, we investigate reaction diffusion 
equation with GCFD. 

Integral transforms such as Laplace, Fourier, Mellin, Hankel, Sumudu etc. which are being extensively 
applied in several branches of science and technology [13]-[15]. Besides, Sumudu transform (analogous to 
Laplace transform) was proposed by [16] in early 1990’s with the motivational superiority over other 
integral transforms, mostly the scale and unity preserving features that could yield adequacy when solving 
differential equations. Moreover, it is notable that Sumudu transformation method provides the solution in 
closed form and possess the capability to scale down the volume of computional work in contrast to the 
other methods. Several properties and applications related to Sumudu transform can be seen in the literature 
[17]-[19].  
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II. DEFINITIONS AND PRELIMINARIES 

Definition II. 1 ([11]) The Riemann-Liouville integral operator of order α > 0 of a function ψ(t) is 
defined as:  
 

 	&𝒥#'𝜓(𝑡) =
,
Γ(')∫

#
& (𝑡 − 𝑢)

'),𝜓(𝑢)𝑑𝑢,			𝛼 ∈ ℂ		and		𝑡 > 0. (4) 
  

Definition II. 2 ([11]) The Riemann-Liouville fractional derivative of order α > 0 of a function ψ(t) is 
defined as:  
 

 	&𝒟#'𝜓(𝑡) =
,

Γ(/)')
0"

0#" ∫
#
& (𝑡 − 𝑢)

/)'),𝜓(𝑢)𝑑𝑢, 𝑘 − 1 < 𝛼 < 𝑘, 𝑘 ∈ ℕ. (5) 
  

Definition II. 3 ([11]) The Caputo fractional derivative of order α > 0 of a function ψ(t) is defined as:  
 

 	&1𝒟#'𝜓(𝑡) =
,

Γ(/)')∫
#
& (𝑡 − 𝑢)

/)'),𝜓(/)(𝑢)𝑑𝑢,			𝑘 − 1 < 𝛼 < 𝑘, 𝑘 ∈ ℕ. (6) 
  

Definition II. 4 ([6], [20]) The Weyl fractional differential operator of order α > 0 is defined as:  
 

 	)*𝒟#'𝜓(𝑡) =
,

Γ(/)')
0"

0#" ∫
#
)* (𝑡 − 𝑢)

/)'),𝜓(𝑢)𝑑𝑢, 𝑘 − 1 < 𝛼 < 𝑘, 𝑘 ∈ ℕ. (7) 
 

The modified Fourier transform of the operator (7) given by [21], is as follows:  
 

 𝐹{)*𝒟#'𝜓(𝑡)} = −|𝑝|'𝜓∗(𝑝). (8) 
 

where the Fourier transform is defined by the integral equation 
  

 𝜓∗(𝑝) = ∫∞)*𝜓(𝑝)exp(𝑖𝑝𝑦)𝑑𝑦. 
 

Definition II. 5 ([10]) For 0 < 𝛼 ≤ 1, and 0 ≤ β ≤ 1, the Hilfer fractional derivative of order α and type 
β of a function ψ(t) is given as:  
 

 	&𝒟#
',(𝜓(𝑡) = (&𝒥#

((,)') 0
0#
(&𝒥#

(,)()(,)')𝜓(𝑡))). (9) 
  

Definition II. 6 ([12]) If k − 1 < 𝛼, 𝛽 ≤ 𝑘; 0 ≤ ν ≤ 1 and k ∈ ℕ, then the generalized composite 
fractional derivative (GCFD) of ψ(t) is defined as:  
 

 	&𝒟#
',(;5𝜓(𝑡) = (&𝒥#

5(/)() 0"

0#"
(&𝒥#

(,)5)(/)')𝜓(𝑡))). (10) 
 

The GCFD (10) for 𝜈 = 0 and 𝜈 = 1 reduces to Riemann-Liouville type fractional derivative of order 𝛼 
(5) and Caputo type fractional derivative of order 𝛽 (6) respectively. Also, for 𝛼 = 𝛽, the GCFD (10) 
becomes Hilfer’s fractional derivative of order 𝛼 and type 𝜈 (9).  

Definition II. 7 [22] A generalization of Mittag-Leffler function Eα,β(t), is given as:  
 

 𝐸',(
+ (𝑡) = ∑∞67&

(+)#
Γ('68()

##

6!
	, 

 
where 𝛼 > 0, 𝛽 > 0, 𝛼, 𝛽, 𝑡 ∈ ℝ and (𝛾)6 denotes shifted factorial and is defined as  

 
 (𝛾)& = 1, (𝛾)6 = 𝛾(𝛾 + 1)(𝛾 + 2)⋯(𝛾 + 𝑗 − 1), 𝑗 = 1,2,⋯ , 𝛾 ≠ 0. 

 
Definition II. 8 The Sumudu transform denoted by G(s) for a function ψ(t) which was introduced by 

[16] is given as:  
 

 𝐺(𝑠) = 𝑆[𝜓(𝑡), 𝑠] = ∫∞& exp(−𝑡)𝜓(𝑠𝑡)𝑑𝑡 = ,
: ∫

∞
& exp(− #

:
)𝜓(𝑡)𝑑𝑡,				𝑠 ∈ (−𝜆,, 𝜆%), 

 
over the set of functions  
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 𝒜 = f𝜓(𝑡)|∃𝑀, 𝜆,, 𝜆% > 0, |𝜓(𝑡)| < 𝑀exp(|#|
<#
), 𝑖𝑓	𝑡 ∈ (−1)6 × [0,∞)k. 

  
Following are some important properties of the Sumudu transform that shall be required in the upcoming 

sections. 
Proposition II. 1 ([18], [23]) If M(s) and N(s) be the Sumudu transform of the functions ψ(t) and ϕ(t) 

respectively, then the Sumudu of their convolution is given as  
 

 𝑆[(𝜓(𝑡) ⋆ 𝜙(𝑡)), 𝑠] = 𝑠𝑀(𝑠)𝑁(𝑠),														 
 

or equivalently,  
 

 𝑆),[𝑠𝑀(𝑠)𝑁(𝑠), 𝑡] = (𝜓(𝑡) ⋆ 𝜙(𝑡)).														 (11) 
 

where,  
 

(𝜓(𝑡) ⋆ 𝜙(𝑡)) = q
#

&
𝜓(𝑢)𝜙(𝑡 − 𝑢)𝑑𝑢. 

  
Theorem II. 1 ([23]) [Sumudu transform of fractional Integral]: Let the sumudu transform of the function 

ψ(t) be G(s), then the sumudu transform G(s) of fractional integral of ψ(t) of order α, is given as:  
 

 𝑆[&𝒥#'𝜓(𝑡), 𝑠] = 𝑠'𝐺(𝑠),			𝑅𝑒(𝛼) > 0. 
  

Theorem II. 2 ([23]) Suppose G(s) is the Sumudu transform of ψ(t), then the Sumudu of the m=> 
derivative ψ(?)(t) is denoted by G?(s) and is given as:  
 

 𝐺@(𝑠) = 𝑆[𝜓@(𝑡), 𝑠] = 𝑠)@𝐺(𝑠) − ∑@),67& 𝑠6)@𝜓(6)(0),			𝑚 ≥ 1. 
  

Theorem II. 3 ([23]) [Sumudu of fractional derivatives]: Let k − 1 ≤ α < 𝑘, k ∈ 𝐍 and G(s) be the 
Sumudu of ψ(t), then the Sumudu Gα(s) of the Riemann-Liouville and Caputo fractional derivatives of 
order α, 𝒟αψ(t) are given as:  

 
 𝐺'(𝑠) = 𝑆[&𝒟#'𝜓(𝑡), 𝑠] = 𝑠)'𝐺(𝑠) − ∑/),67& 𝑠)(68,)[𝒟')6),𝜓(𝑡)|#7&]. 
 

and  
 

𝐺'(𝑠) = 𝑆[&1𝒟#'𝜓(𝑡), 𝑠] = 𝑠)'𝐺(𝑠) −x
/),

67&

𝑠)(')6)[𝒟/𝜓(𝑡)|#7&]. 

  
Theorem II. 4 ([7]) In the complex plane ℂ, for any Re(β) > 0, Re(γ) > 0 and ϑ ∈ ℂ, the following 

equality holds for inverse Sumudu transform:  
 

 𝑆),[𝑠+),(1 − 𝜗𝑠())A] = 𝑡+),𝐸(,+A |𝜗𝑡(}. (12) 
  

Theorem II. 5 ([7]) If k − 1 < 𝛼, 𝛽 < 𝑘 such that k ∈ ℕ and β, then the following equality holds  
 

 𝑆),[ ,
:(:$%8B⋅:$&8D)

] = ∑∞E7& (−𝜌)E𝑡'(E8,)), × 𝐸')(,'(E8,)E8, (−𝜉 ⋅ 𝑡')().       (13) 
 

III. MAIN RESULTS 

Before we give the Sumudu transform of GCFD, we give the following lemma 
Lemma III. 1 If k − 1 < 𝛼, 𝛽; 	𝜇, 𝛿 < 𝑘 such that k ∈ ℕ, 0 ≤ ν ≤ 1 and {α− ν(α− β)} > {𝜇 − 𝜈(𝜇 −

𝛿)}, then the following equality holds  
 

𝑆),[ :'("$&)$"

:'(%$&)$%8B⋅:'(*$+)$*8D
] = ∑∞E7& (−𝜌)E𝑡5(/8E()8'(E8,)(,)5))/

× 𝐸')5(')())F85(F)A),5(/8E()8'(E8,)(,)5))/8,E8, (−𝜉 ⋅ 𝑡')5(')())F85(F)A)).
 (14) 

Proof. To prove (14), consider  
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 :'("$&)$"

(:'(%$&)$%8B⋅:'(*$+)$*8D)
 

 		= :'("$&)$"

:'(%$&)$%8B⋅:'(*$+)$*
(1 + D

:'(%$&)$%8B⋅:'(*$+)$*
)), 

 		= ∑∞E7& (−𝜌)E𝑠:
'("$&)$"){5(')())'}(E8,)(1 + 𝜉 ⋅ 𝑠')5(')())F85(F)A)))(E8,)			 (15) 

 
Now applying the inverse Sumudu transform on both sides of (15) and then using (12), we obtain (14). 
Theorem III.2 If G(s) is the Sumudu transform of ψ(t) and k − 1 < 𝛼, 𝛽 ≤ 𝑘 with k ∈ ℕ, then the 

Sumudu of the GCFD	&𝒟=
α,β;νψ(t) is given by 

  
 𝑆[&𝒟#

',(;5𝜓(𝑡), 𝑠 = 𝑠5(')())'𝐺(𝑠) − ∑ 𝑠5(/)())/86 �|𝒟6(&𝒥#
(,)5)(/)')𝜓}(𝑡)� |#7&/),

67& 	.				
 (16) 

  
Proof. For simplicity, suppose 𝜙(𝑡) = 𝒟/

&𝒥#
(,)5)(/)')𝜓(𝑡) = 𝒟/Φ(𝑡). So, by (9) and using Theorem 

II.1, we have  
 

𝑆[&𝒟#
',(;5𝜓(𝑡), 𝑠] = 𝑆[&𝒥#

5(/)()𝜙(𝑡), 𝑠] = 𝑠5(/)()𝑆[𝜙(𝑡), 𝑠] = 𝑠5(/)()𝑆[𝒟/Φ(𝑡), 𝑠],																							 
 

 where Φ(𝑡) =& 𝒥#
(,)5)(/)')𝜓(𝑡). By applying Theorem II.2, we obtain  

 
𝑆[&𝒟#

',(;5𝜓(𝑡), 𝑠] = 𝑠5(/)())/𝑆[&𝒥#
(,)5)(/)')𝜓(𝑡), 𝑠]

−∑/),67& 𝑠5(/)())/86[(𝒟6(&𝒥#
(,)5)(/)')𝜓)(𝑡))|#7&].

     (17) 

 
Again using Theorem II.1 in (17), we get the desired result (16).  
Now, we solve reaction-diffusion equation with GCFD by using Sumudu and Fourier transformation  
Theorem III.3 Consider the fractional diffusion equation  

 
 	&𝒟#

',(;5𝑁(𝑥, 𝑡) + 𝜉 ⋅& 𝒟#
F,A;5𝑁(𝑥, 𝑡) = 𝜒%)*𝒟$

+𝑁(𝑥, 𝑡) + 𝜂%𝑁(𝑥, 𝑡) + 𝜓(𝑥, 𝑡), (18) 
 

with the initial conditions  
 

 
𝒟6

&𝒥#
(,)5)(/)')𝑁(𝑥, 𝑡)|#7& = 𝑓6(𝑥)

𝒟6
&𝒥#

(,)5)(/)F)𝑁(𝑥, 𝑡)|#7& = 𝑔6(𝑥) � ; 					𝑗 = 0,1,2, …𝑘 − 1, &	𝑘 ∈ ℕ, (19) 

where 𝑘 − 1 < 𝛼, 𝛽; 	𝜇, 𝛿 ≤ 𝑘, such that 𝛼 > 𝜇, 𝛽 > 𝛿 and 0 ≤ 𝜈 ≤ 1. Also, 𝜒 is a diffusion coefficient, 
𝜂 is a constant which represents nonlinearity of the system and 𝜓 is a nonlinear function for reaction 
kinetics, then the solution of (18) corresponding to 𝑁(𝑥, 𝑡) is as follow 
 
𝑁(𝑥, 𝑡) = ∑/),67& ∑∞E7&

()D),

√%J
∫∞)* {𝑡

5(/8E()8'(E8,)(,)5))/86𝑓6∗(𝑝)exp(−𝑖𝑝𝑥)  
×	𝐸')5(')())F85(F)A),5(/8E()8'(E8,)(,)5))/868,E8, (−𝜉𝑡')5(')())F85(F)A))}𝑑𝑝 

 +∑/),67& ∑∞E7& 𝜉 ⋅
()D),

√%J
∫∞)* {𝑡

/(5),)8(E8,)K')5(')()L)5A86𝑔6∗(𝑝)exp(−𝑖𝑝𝑥)			 
       × 𝐸')5(')())F85(F)A),/(5),)8(E8,)(')5(')()))5A868,E8, (−𝜉𝑡')5(')())F85(F)A))}𝑑𝑝 

 +∑∞E7&
()D),

√%J
∫#& {𝑢

{')5(')()}(E8,)), ∫∞)*𝜓
∗(𝑝, 𝑡 − 𝑢)exp(−𝑖𝑝𝑥) 

  × 𝐸')5(')())F85(F)A),{')5(')()}(E8,)E8, (−𝜉 ⋅ 𝑡')5(')())F85(F)A))𝑑𝑝}𝑑𝑢. (20) 
  

Proof. By applying the Sumudu transform on both sides of (18) with respect to variable 𝑡, then using 
(16) and (19), we obtain  
 
														 𝑠5(')())'𝑁(𝑥, 𝑠) − ∑/),67& 𝑠5(/)())/86𝑓6(𝑥) + 𝜉 ⋅ 𝑠5(F)A))F𝑁(𝑥, 𝑠)

−𝜉 ⋅ ∑/),67& 𝑠5(/)A))/86𝑔6(𝑥) 	= 𝜒%)*𝒟#
+𝑁(𝑥, 𝑠) + 𝜂%𝑁(𝑥, 𝑠) + 𝜓(𝑥, 𝑠).

 (21) 

 
Now applying Fourier transform on both sides of (21) with respect to variable 𝑥 and using (8), we get 
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𝑠5(')())'𝑁
∗
(𝑝, 𝑠) −x

/),

67&

𝑠5(/)())/86𝑓6∗(𝑝) + 𝜉 ⋅ 𝑠5(F)A))F𝑁
∗
(𝑝, 𝑠) − 𝜉 ⋅x

/),

67&

𝑠5(/)A))/86𝑔6∗(𝑝)

= −𝜒%|𝑝|+𝑁
∗
(𝑝, 𝑠) + 𝜂%𝑁

∗
(𝑝, 𝑠) + 𝜓

∗
(𝑝, 𝑠). 

 
 Solving for 𝑁

∗
(𝑝, 𝑠), the above equation is equivalent to  

 
	𝑁

∗
(𝑝, 𝑠) = ∑/),67& 𝑓6∗(𝑝)

:'("$&)$"-#

:'(%$&)$%8B⋅:'(*$+)$*8D
					

+∑/),67& 𝜉 ⋅ 𝑔6∗(𝑝)
:'("$+)$"-#

:'(%$&)$%8B⋅:'(*$+)$*8D
+ M

∗
(N,:)

:'(%$&)$%8B⋅:'(*$+)$*8D
,
 (22) 

 
 where 𝜌 = 𝜒%|𝑝|+ − 𝜂%. Now by applying inverse Sumudu transform on both sides of (22) and then 

using (14) and convolution of Sumudu transform (11), we have 
 

	𝑁∗(𝑝, 𝑡)

= x
/),

67&

𝑓6∗(𝑝)x
∞

E7&

{(−𝜌)E𝑡5(/8E()8'(E8,)(,)5))/86 																																																																																										

× 𝐸')5(')())F85(F)A),5(/8E()8'(E8,)(,)5))/868,E8, (−𝜉 ⋅ 𝑡')5(')())F85(F)A))}									 
 	+∑/),67& 𝜉 ⋅ 𝑔6∗(𝑝)∑∞E7& {(−𝜌)E𝑡/(5),)8(E8,){'(,)5)85(})5A86 
 × 𝐸')5(')())F85(F)A),/(5),)8(E8,){'(,)5)85(})5A868,E8, (−𝜉 ⋅ 𝑡')5(')())F85(F)A))} 
 +∑∞E7& (−𝜌)E ∫

#
& {𝜓

∗(𝑝, 𝑡 − 𝑢)𝑢{')5(')()}(E8,)), 
 × 𝐸')5(')())F85(F)A),{')5(')()}(E8,)E8, (−𝜉 ⋅ 𝑡')5(')())F85(F)A))}𝑑𝑢. (23) 
 

Thus, applying inverse Fourier transform on both sides of (23), we arrive at (20).  

A. Special Cases 
 

Corollary 1 For ν = 0, the reaction diffusion equation with GCFD (18) takes the form  
 

 	&𝒟#'𝑁(𝑥, 𝑡) + 𝜉 ⋅& 𝒟#
F𝑁(𝑥, 𝑡) = 𝜒%)*𝒟$

+𝑁(𝑥, 𝑡) + 𝜂%𝑁(𝑥, 𝑡) + 𝜓(𝑥, 𝑡), (24) 
 

where	&𝒟#' and	&𝒟#
F are fractional derivatives in Riemann-Liouville sense such that 𝑘 − 1 < 𝛼, 𝜇 ≤ 𝑘; 

𝛼 > 𝜇 with the initial conditions  
 

 
𝒟6

&𝒥#
(/)')𝑁(𝑥, 𝑡)|#7& = 𝑓6(𝑥)

𝒟6
&𝒥#

(/)F)𝑁(𝑥, 𝑡)|#7& = 𝑔6(𝑥) � ; 	𝑗 = 0,1,2, …𝑘 − 1, &	𝑘 ∈ ℕ. (25) 

  
The solution of (24) with the initial conditions (25) is given by 

 
 𝑁(𝑥, 𝑡) = ∑/),67& ∑∞E7&

()D),

√%J
∫∞)* {𝑡

'(E8,))/86𝑓6∗(𝑝)exp(−𝑖𝑝𝑥) 
 																																																																× 𝐸')F,'(E8,))/86),E8, (−𝜉 ⋅ 𝑡')F)}𝑑𝑝 

 +∑/),67& ∑∞E7& 𝜉 ⋅
()D),

√%J
∫∞)* {𝑡

'(E8,))/86𝑔6∗(𝑝)exp(−𝑖𝑝𝑥) 
 																																																															× 𝐸')F,'(E8,))/86),E8, (−𝜉 ⋅ 𝑡')F)}𝑑𝑝 

 +∑∞E7&
()D),

√%J
∫#& {𝑢

'(E8,)), ∫∞)*𝜓
∗(𝑝, 𝑡 − 𝑢)exp(−𝑖𝑝𝑥) 

 																																																															× 𝐸')F,'(E8,)E8, (−𝜉 ⋅ 𝑡')F)𝑑𝑝}𝑑𝑢. 
  

Corollary 2  For ν = 1, the reaction diffusion equation with GCFD (18) reduces into  
 

 	&𝒟#
(𝑁(𝑥, 𝑡) + 𝜉 ⋅& 𝒟#A𝑁(𝑥, 𝑡) = 𝜒%)*𝒟$

+𝑁(𝑥, 𝑡) + 𝜂%𝑁(𝑥, 𝑡) + 𝜓(𝑥, 𝑡), (26) 
 

where	&𝒟#
( and 	&𝒟#A are fractional derivatives in caputo sense such that 𝑘 − 1 < 𝛽, 𝛿 ≤ 𝑘; 𝛽 > 𝛿 with 

the initial conditions  
 

 𝒟6𝑁(𝑥, 𝑡)|#7& = 𝜙6(𝑥), 𝑗 = 0,1,2,⋯𝑘 − 1	and	𝑥 ∈ ℝ. (27) 
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The solution of (26) with the initial conditions (27) is given as  
 

 𝑁(𝑥, 𝑡) = ∑/),67& ∑*E7&
()D),

√%J
∫*)* 𝑡

(E86𝜙6∗(𝑝)exp(−𝑖𝑝𝑥)𝐸()A,(E868,E8, (−𝜉𝑡()A)𝑑𝑝 

 													+∑/),67& ∑*E7& 𝜉 ⋅
()D),

√%J
∫*)* {𝑡

((E8,))A86𝜙6∗(𝑝)exp(−𝑖𝑝𝑥) 

            

																																																																				× 𝐸()A,((E8,))A86),E8, (−𝜉 ⋅ 𝑡()A)}𝑑𝑝

																	+∑*E7&
()D),

√%J
∫#& {𝑢

((E8,)), ∫*)*𝜓
∗(𝑝, 𝑡 − 𝑢)exp(−𝑖𝑝𝑥)

																																																																			× 𝐸()A,((E8,)E8, (−𝜉 ⋅ 𝑡()A)𝑑𝑝}𝑑𝑢.

 (28) 

 
In particular, if we set 𝑘 = 1 in (26)-(28), we get a form of fractional reaction diffusion equation studied 

by [6] and [24]. 
Corollary 3 For α = β; µ = δ, the generalized composite fractional reaction-diffusion (18) reduces into 

reaction-diffusion equation with Hilfer’s fractional derivative, that is  
 

 	&𝒟#
',5𝑁(𝑥, 𝑡) + 𝜉 ⋅& 𝒟#

F,5𝑁(𝑥, 𝑡) = 𝜒%)*𝒟$
+𝑁(𝑥, 𝑡) + 𝜂%𝑁(𝑥, 𝑡) + 𝜓(𝑥, 𝑡), (29) 

 
with the corresponding initial conditions as:  

 

 
𝒟6

&𝒥#
(,)5)(/)')𝑁(𝑥, 𝑡)|#7& = 𝑓6(𝑥)

𝒟6
&𝒥#

(,)5)(/)F)𝑁(𝑥, 𝑡)|#7& = 𝑔6(𝑥) � ; 			𝑗 = 0,1,2, …𝑘 − 1, &	𝑘 ∈ ℕ, (30) 

  
where k − 1 < 𝛼, 𝜇 ≤ 𝑘 such that α > 𝜇,  0 ≤ ν ≤ 1. The corresponding solution is given by  

 
 𝑁(𝑥, 𝑡) = ∑/),67& ∑*E7&

()D),

√%J
∫*)* {𝑡

'(E8,)5)85(/),)86𝑓6∗(𝑝)exp(−𝑖𝑝𝑥) 
 																																																				× 𝐸')F,'(E8,)5)8/(5),)868,E8, (−𝜉 ⋅ 𝑡')F)}𝑑𝑝 

 															+∑/),67& ∑*E7& 𝜉 ⋅
()D),

√%J
∫*)* {𝑡

/(5),)8'(E8,))5F86𝑔6∗(𝑝)exp(−𝑖𝑝𝑥) 
 																																																			× 𝐸')F,/(5),)8'(E8,))5F868,E8, (−𝜉 ⋅ 𝑡')F)}𝑑𝑝 

                           +∑*E7&
()D),

√%J
∫#& {𝑢

'(E8,)), ∫*)*𝜓
∗(𝑝, 𝑡 − 𝑢)exp(−𝑖𝑝𝑥) 

 																																																				× 𝐸')F,'(E8,)E8, (−𝜉 ⋅ 𝑡')F)}𝑑𝑢𝑑𝑝. 
 

In particular, if we take 𝑘 = 1, then this case gives fractional diffusion equation studied by [7]. 
 

IV. CONCLUSION 

In this work, first we have given some lemmas related to Sumudu transform and then the Sumudu 
transform of generalized composite fractional derivative. We have generalized the fractional reaction 
diffusion equation by using Generalized Composite Fractional Derivative (GCFD) and we obtained the 
solution of reaction diffusion equation with GCFD by the use of Sumudu and Fourier transform. Further, 
we have mentioned some special cases related to the generalized equation. 
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