EJ-MATH, European Journal of Mathematics and Statistics
Vol. 2, No. 1, February 2021

A SARIMA and Adjusted SARIMA Models in a Seasonal
Nonstationary Time Series; Evidence of Enugu Monthly
Rainfall

Amaefula Chibuzo Gabriel

Abstract—The paper compares SARIMA and adjusted
SARIMA(ASARIMA) in a regular stationary series where the
underlying variable is seasonally nonstationary. Adopting
empirical rainfall data and Box-Jenkins iterative algorithm that
calculates least squares estimates, Out of 11 sub-classes of
SARIMA and 7 sub-classes of ASARIMA models, AIC chose
ASARIMA(2,1,1)12 over all sub-classes of
SARIMA(p,0,q)x(P,1,Q)12 identified. Diagnostic test indicates
absence of autocorrelation up to the 48t lag. The forecast values
generated by the fitted model are closely related to the actual
values. Hence, ASARIMA can be recommended for regular
stationary time series with seasonal characteristics and where
parameter redundancy and large sum of square errors are
penalized.

Index Terms—AIC, ASARIMA model,
nonstationary time series

rainfall, seasonal

I. INTRODUCTION

The use of seasonal autoregressive integrated moving
average (SARIMA) terms for monthly or quarterly data with
systematic seasonal movements was recommended by[7].
Technical details can be obtained from the aforementioned
citation. Situation could arise when the underlying variable
of interest is regularly stationary but it is characterized by
cyclical pattern that is seasonally nonstationary and needs
seasonal differencing. Time series variables with such
characteristics can be better modelled with Adjusted
SARIMA(P,D,Q)s rather than SARIMA(p,d,q)x(P,D,Q)s
model.However, for such time series,
SARIMA(p,d,q)x(P,D,Q)s increases the sum of square
residuals due to some redundant parameters and the
autocorrelation of the model residuals may be strong in
higher lag orders. These are the advantages of Adjusted
SARIMA over SARIMA model. Adjusted SARIMA models
are frugal in parameter representation. Rainfall is one of the
most important natural factors that determine the agricultural
production in and across the globe, particularly in Nigeria.
The variability of rainfall and the pattern of extreme high or
low precipitation are very important for agriculture as well as
the economy of the state. Even the global climatic change has
increased the quest for more research on the subject matter
due to high flood risk disaster at the peak of rainy season.

Enugu State is one of the states in the eastern part of
Nigeria located at the foot of the Udi Plateau, a tropical rain
forest zone with a derived savannah. The state shares borders
with Abia State and Imo State to the south, Ebonyi State to
the east, Benue State to the northeast, Kogi State to the
northwest and Anambra State to the west. Enugu has good
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soil-land and climatic conditions all year round, sitting at
about 223 metres (732 ft) above sea level, and the soil is well
drained during its rainy seasons.Enugu is in the tropical rain
forest zone with a derived savannah, with humidity highest
between March and November [13]. For the whole
of Enugu State the mean daily temperature is 26.7 °C (80.1
°F). The mean temperature in Enugu State in the hottest
month of February is about 87.16 °F (30.64 °C), while the
lowest temperatures occur in the month of November,
reaching 60.54 °F (15.86 °C). The lowest rainfall of about
0.16 cubic centimetres (0.0098 cubic inch) is normal in
February, while the highest is about 35.7 cubic centimetres
(2.18 cuin) in July. Enugu State had a population of
3,267,837 people at the census held in 2006 (estimated at
over 3.8 million in 2012).

A lot of researchers have paid considerable attention
towards modelling and forecasting the amount of rainfall
pattern in various places. For instance, [14] fitted a
SARIMA(O, 1, 1)x(0, 1, 1)1 monthly rainfall in Tamilnadu,
India. [16] fitted the SARIMA models of orders (1, 1, 2)x(1,
1, D and (4, 0, 2)x(1, 0, 1)1o respectively for monthly
rainfall in Malaaca and Kuantan in Malaysia. [1] examined
the SARIMA model suitable for rainfall prediction in the
Brong Ahafo (BA) Region of Ghana using a data from 1975
to 2009. The results revealed that the region experience much
rainfall in the months of September and October, and least
amount of rainfall in the months of January, December and
February. They fitted SARIMA (0,0,0)x(1,1,1)12, model for
predicting monthly average rainfall figures for the Brong
Ahafo Region of Ghana.

[12] modelled monthly rainfall in Port Harcourt, Nigeria,
using seasonal SARIMA (5, 1, 0)x(0, 1, 1)12 model. The time-
plot shows no noticeable trend. The known and expected
seasonality is clear from the plot. Seasonal (i.e. 12-point)
differencing of the data is done, then a nonseasonal
differencing is done of the seasonal differences. The
correlogram of the resultant series reveals the expected 12-
monthly seasonality, and the involvement of a seasonal
moving average component in the first place and a
nonseasonal autoregressive component of order 5. Hence the
model mentioned above. The adequacy of the modelled has
been established. [15] modelled quarterly rainfall in Port
Harcourt, Nigeria, as a SARIMA(0, 0, 0)x(2, 1, 0)4 model.
[3] examined the time series analysis on rainfall in Oshogbo
Osun State, Nigeria, using monthly data of rainfall between
2004-2015. The time plot reveals that the rainfall data show
high level of volatility characterized by seasonal and
irregular variations. And the logistic model applied showed
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to be better and then used to forecast the rainfall for the next
2 years. [5] examined the modelling of mean annual rainfall
pattern in Port Harcourt, Nigeria using ARMA(p,q) model..
The data on rainfall used covered the period of 1981 to 2016.
Sum of squares deviation forecast criteria (SSDFC) was
adopted to select the best performing sub-classes of
ARMA(p, q) that fits the data. Among ARMA(1, 1),
ARMA(L, 2) ARMA(2, 1) and ARMA(2, 2) models
estimated, SSDFC chose ARMA(1, 2) as the best performing
model. The selected model were supported by AIC and BIC
respectively. And concluded that ARMA(1, 2) can be used to
predict long term quality of water foragriculture and
hydrological purpose and to create long term awareness
against flood and control strategy for Port Harcourt.

[6] modelled monthly rainfall pattern in Imo state using
seasonal autoregressive integrated moving average
(SARIMA) model with univariate monthly rainfall data
spanning from 1981M1-2017M12. Sum of square deviation
forecast criterion (SSDFC) was used to compare nine (9)
different sub-classes of SARIMA( p,d,q)x(P,D,Q)12 models
identified. And the result indicated that
SARIMA(0,0,0)x(1,1,1)12 is more appropriate in predicting
monthly rainfall in the state.

The modelling of monthly rainfall in any state is essential
in understanding the temporal and spatial variability which is
very important in flood risk management, irrigation and
surface water management and so on. Moreover, the need to
diversify the economy towards agricultural base in Nigeria
has made it necessary to model seasonal pattern of rainfall in
the state for agricultural planning. Hence, this study
examines the best fitted model between seasonal ARIMA
(SARIMA) model and adjusted seasonal ARIMA
(ASARIMA) model for rainfall forecast in Enugu State.

The study presents a simple analytical model adjusted
from SARIMA process. The remaining part of the paper is
arranged as follows; section two presents the materials and
methods, section three presents data analysis and results and
section four deals with conclusion.

Il. MATERIALS AND METHODS

This section highlights the methods and sources of data
collection, variable measurement, method of unit root test,
model specification, and model identification, method of data
analysis, model comparison techniques and diagnostic
checks.

A. Source of Data and Variable Measurement

The monthly rainfall data was obtained from central bank
of Nigeria (CBN) (2018) statistical bulletin. The univariate
time series data collected covered the period of 1981M1-
2017M12 (432 observations of monthly rainfall data).
Rainfall is usually measured in millimetre using rain gauge.

B. SARIMA Model Specification

If the time series {Xt} is nonstationarity due to the

presence of one or several of five conditions: outliers,
random walk, drift, trend, or changing variance, it is
conventional that first or second differencing (d) is necessary
to achieve stationarity. Hence, the original series is said to
follow an autoregressive integrated moving average model or
orders p, d and q denoted by ARIMA(p, d, q) of the form

ALV X, = B(L)u, O
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If the series {Xt} exhibits seasonal patterns of

nonstationarity, this may be detected using time plot,
correlograms or even unit root test. And according to [7]
Seasonal ARIMA models sometimes called SARIMA
models has the general form SARIMA(p,d,q) x (P, D,Q), and

it is given as

ALV VEX, =BLOL L,

where A(L) is the autoregressive (AR) operator, given by
A(L)=1-aL—-—a,L” and B(L)is the moving
average  (MA) B(L) =
1- B L—-+-—B,L". For L denotes the backshift operator.

operator, given by

q)(LS) and @(LS) are lagged seasonal AR and MA

operators of order P and Q respectively. The operator %
denotes the difference operator defined by V¢ =1— L and
d<2. The V° represents the seasonal difference

operator defined by V  =1—L° and D is the seasonal

differencing order. The seasonal differencing (1— LS) is

called the simplifying operator, which renders the residual
series stationary and amenable to further analysis.

C. Adjusted SARIMA Model

The SARIMA model in (2) is the combination of
nonseasonal AR and MA operators of order p and g and
seasonal AR and MA operators of order P and Q. If a
univariate time series is stationary in non-seasonal
component (where d=0) and exhibits a purely seasonal
pattern that is nonstationary (where D=1). It could be
parsimoniously better to only fit the seasonal AR and MA
operators of order P and Q. In such cases, it is appropriate to
assume that A(L) =1, B(L)=1and d=0 so that (2) can

be of the form;
CD(LS)VSXI :®(Ls)ut (3)
where ®(L,) is the seasonal autoregressive (SAR) operator,
givenby @(L,) =1-¢g L, — - — L, and O(L,) is
the seasonal moving average (SMA) operator, given by
®(Ls) =1-OL,,—— 9@ LSXQ -Generally, the
Adjusted SARIMA(P,D,Q)s model which hereafter is known
as ASARIMA(P,D,Q)s model with the inbuilt constant term
is specifically of the form;
VX =0+ @V X gqt -+ 8V X or

4
+ glut—(sxl) oot eQut—(st) )
where @ is the constant parameter and S is the seasonal
index. ASARIMA(P,D,Q)s model is special case of

SARIMA(p,d,q) x (P, D, Q) model.

D. Model Identification

The ACF of an MA(q) model cuts off after lag g whereas
that of an AR(p) model is a combination of sinusoidals dying
off slowly. On the other hand, the PACF of an MA(g) model
dies off slowly whereas that of an AR(p) model cuts off after
lag p. The AR and MA models are known to exhibit some
duality relationships. Parametric parsimony consideration in
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model building entails the use of the mixed ARMA fit in
preference to either the pure AR or the pure MA fit.

Note that SARIMA can be fitted irrespective of whether
the underlying variable is seasonally stationary or not.The
differencing operators d = O for stationary series and for
nonstationary series d could be 1 or 2 depending on the order
of integration of the variable under study. The seasonal
difference D may be chosen to be at most equal to 1. The
nonseasonal and seasonal AR orders p and P are fitted by the
nonseasonal and the seasonal cut-off lags of the partial
autocorrelation function (PACF) respectively. Similarly the
nonseasonal and the seasonal MA orders g and Q are fitted
respectively by the nonseasonal and seasonal cut-off points
of the ACF.

E. Conditions for ASARIMA(P,D,Q)s Model

The following conditions should lead to the adoption of

ASARIMA(P,D,Q)s model;

1) The underlying univariate time series must be non-
seasonally stationary (d=0) and exhibits cognizable
seasonal pattern. Note, seasonal differencing(D) may be
Oorl.

2) The ACF must reveal seasonal oscillation with
significant spikes at every k™ lag, here K =sx1i and
i=12--- K.

3) The PACF tends to cut-off at every k™ lag and cut-in.

4)  If the spikes in (iii) tails off at every k' lag consider
fitting ASARIMA(P,D,0)s

5) If the spikes in (iii) do not tails off at every k" lag
consider fitting ASARIMA(0,D,Q)s

6) If the spikes indicate mixture of (iv) and (v) consider
fitting ASARIMA(P,D,Q)s

7)  Use some information criteria such SSDFC, AIC BIC,
SC etc to select the best fitted model.

F. ADF Unit Root Test

ADF unit root test helps to check the order of integration
of the variables under study. The unit root test here, is based
on Augmented Dickey Fuller (ADF) test and is of the form

K
Wo=a+at+ ., + Zé:ivyt—i t 4, ()

i=1
where k is the number of lag variables. In (5) there is intercept
term, the drift term and the deterministic trend. The non
deterministic trend term removes the trend term in (5). And
it can be carried out with the choice of removing both the
constant and deterministic trend term in the above regression.

ADF unit root test null hypothesis H,:f# =0 and

alternative H, : < 0. According to [7], if the ADF test

statistic is greater than 1%, 5% and 10% critical values, the
null hypothesis of a unit root test is accepted. ERS unit root
test will used to consolidate the result provided by ADF test.
See the technical details in [11].

G. Model Comparison

There are several model selection criteria in literature such
as; Bayesian information criterion(BIC),Aikaike information
criterion(AIC), residual sum of squares and so on. If n is the
sample size and RSS is the residual sum of squares, then, BIC
and AIC are given as follows;
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BIC =2k +In(RSS/n)+k(Inn/n)  (6)
AIC =2k +nIn(RSS /n) (7)

where, n is the sample size, k is the number of estimated
parameters (for the case of regression, k is the number of
regressors) and RSS is the residual sum of squares based on
the estimated model. However, it is good to note that both
BIC and AIC are affected by the number of parameters
included to be estimated in a model. For the case of BIC, it
penalizes free parameters while AIC becomes smaller as the
number of free parameters to be estimated increases. But for
this study, model selection will be based on AIC. The sum of
squares deviation forecast criterion introduced by [4] will be
used to check models output performance for 150 forecast
lead time . And it is of the form;

13 - ’
SSDFC = EZ(yt(l,i) - yt(l,i)) 8)

i=1
Where | is the lead time, m is the number of forecast values
to be deviated from the actual values (m should be reasonably

large), Yiqi I the actual values of the time series

corresponding to the i" position of the forecast values and
yt,(l,i) is the forecast values corresponding to the i*" position

of the actual values. In comparison, the model with the
smallest value of SSDFC is the best output performing model
that can describe, to the closest precision, the behavior of the
underlying fitted model.

H. Model Estimation

The coefficients are estimated using an iterative algorithm
that calculates least squares estimates. At each point of
iteration, the back forecasts are computed and sum of squares
error (SSE) is calculated. For more details, see [8].

I1l. DATA ANALYSIS AND RESULTS

This section presents the time series plot of Enugu monthly
rainfall data, results of ADF unit root test, plots of ACF and
PACF and estimates of SARIMA (p,d,q)*(P,D,Q)s model.
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Fig.1. Time plot of EMR (1981M1 — 2016M12)

The plot of monthly rainfall in Figurel exhibits seasonal
nonstationary pattern. It is also observable that the time series
plot lacks trend with the highest precipitation of 508.3
Millimeters in July 1990 and lowest precipitation of 0.5
Millimeters in January and February the same year.
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Fig.2. Time plot of Seasonally differenced EMR (1981M1 — 2016M12)

The seasonally differenced EMR data in Fig.2 is
seasonally stationary with most of the data concentrated
around zero.

TABLE I. ANALYSIS OF ORDER OF INTEGRATION OF EMR

Critical
Test DT Values
Rainfall Lags Test 1% Remark
Value 5%
10%
-3.4457 1(0)
ADF EMR C 11 -3.8511 | -2.8682 | significant
-2.5704 | under 5%
1.9900 1(0)
ERS EMR C 5 2.4747 3.2600 | significant
4.4800 at 5%

Note that DT represents ‘deterministic term’.

The results of ADF and ERS unit root tests in Table |
above generally indicate that EMR variable is integrated
order zero 1(0), significant at 5% level. Hence, the monthly
rainfall under investigation is stationary. Having the EMR
variable exhibiting stationarity, then, it will be modeled using
seasonal autoregressive moving average SARIMA
(p, 0, q)*(P,D,Q)s model.

A Correlogram

The correlogram presents the plots of autocorrelation
function (ACF) and the partial autocorrelation function
(PACF) for model identification as presented in Figure3 and
Figure4 below.
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Fig.3. Plots of ACF EMR (with 5% significance limits for the
correlogram)
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Fig.4. Plots of PACF for EMR (with 5% significance limits for the
correlogram)

The plot of autocorrelation function in Figure3 exhibits
presence of seasonal effect. The cyclical correlogram with a
seasonal frequency suggests fitting a seasonal ARMA model
to the rainfall data. The result indicates the need for seasonal
differencing in the model. The time plot revealed
seasonality in the rainfall variable. But where this is not too
clear via time plot, the autocorrelation function (ACF) could
reveal the value of s, as the significant lag of the ACF.

There appear to be annual or 12-month spikes in the ACF
and PACF as shown in Figure3 and Figure4. The ACF clearly
exhibits this prima facie evidence of seasonal nonstationarity.
The PACF reveals the seasonal spikes at lags 12, 24 36 and
48. Slow attenuation of the seasonal peaks in the Figure4
ACF signifies seasonal nonstationarity. The 12-month PACF
periodicity can be seen in the periodic peaks at every 121" lag
up to 48" lag evocatiing of seasonal differencing at lag 12.

B. Model Comparison
This section presents a comparison of 27 possible models
using SSDFC as presented in Table 1l below;

TABLE Il. MODEL SELECTION USING AIC

Model AIC BIC SSDFC
SARIMA(1,0,0)<(1,1,1);, | 3557.36 | 16.2723 | 3114.06*
SARIMA(2,0,0)<(1,1,1);, | 3559.35 | 18.2863 | 3116.75
SARIMA(3,0,0)<(1,1,1);, | 356040 | 20.2982 | 3123.90
SARIMA(L,0,)x(1,1,1);, | 3558.85 | 18.2852 | 3118.40
SARIMA(2,0,D)x(L,1,1);, | 3560.18 | 20.2977 | 3126.79
SARIMA(3,0,)x(1,1,1);, | 3559.91 | 22.3065 | 3123.78
SARIMA(1,03)x(L,1,1);, | 3559.78 | 22.3061 | 3123.79
SARIMA(1,0,0)x(2,1,1);, | 3555.24 | 18.2768 | 3238.72
SARIMA(0,0,D)x(1,1,1);, | 3557.34 | 16.2722 | 3117.09
SARIMA(0,02)x(1,1,1);, | 3559.31 | 18.2862 | 3119.80
SARIMA(0,0.3)x(1,1,1);, | 356048 | 20.2984 | 3121.29
ASARIMA(0,L,1) 1, 3553.90 | 12.2455* | 3116.94
ASARIMA(0,1,2) 1, 355161 | 14.2496 | 3186.91
ASARIMA(0,1,3) 1, 3554.10 | 16.2647 | 3218.03
ASARIMA(LLI) 1, 3555.91 | 14.2505 | 3116.73
ASARIMA(2,1,1) 1, 3550.12* | 16.2555 | 3229.91
ASARIMA(L,1,2) 1, 3551.88 | 16.2596 | 3119.28
ASARIMA(2,1,2) 1, 3551.24 | 18.2676 | 3157.69

The 18 models in Table 11 above showed at least no serial
correlation in the model residuals up to 12" lag using
Modified Box-Pierce statistic. Model comparison using AIC
indicates that ASARIMA(2,1,1)1, is preferred to the other
sub-classes of SARIMA(p,d,q)*(P,D,Q)12 and ASARIMA
(P,D,Q)12 models since it has the smallest value of AIC.
Though the chosen information criterion is AIC, BIC also
preferred ASARIMA to SARIMA. However, based on
output performance such as forecast (for 150 lead time),
SSDFC prefers and SARIMA(1,0,0)x(1,1,1)12 followed by
ASARIMA(1,1,1)1, .
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TABLE Ill. FINAL ESTIMATES OF ASARIMA(2,1,1)1, PARAMETERS

Type Coef SECoef T P
SAR 12 0.0047 0.0518 0.09 0.928
SAR 24 24 0.0519 -1.89 0.060
SMA 12 12 0.0234 40.66 0.000
Constant 1.0529 0.2195 4.80 0.000

Differencing: 0 regular, 1 seasonal of order 12, Number of observations:
Original series 432, after differencing 420, Residuals:  SS = 1571863
(backforecasts excluded),

MS = 3779 DF =416

The model result in Table 111 shows that the parameters
SMA lag 12 and SAR at lag 24 are significant under 5%
and 10% respectively. The ASARIMA(2,1,1)1, model is of
the form;

V,,X, =1.0529 + 0.0047V , X, ,, —0.0981V,,X, ,,
+0.9513u, ,, 9)

TABLE IV. MODIFIED BOX-PIERCE (LJUNG-BOX)
CHI-SQUARE STATISTIC

Lag 12 24 36 48
Chi-Square | 13.4 24.2 455 53.4
DF 8 20 32 44
P-Value 0.099 0.058 0.058 0.0156

The result of Table IV shows that the probability of
Modified Box-Pierce (Ljung-Box) Chi-Square statistic are
all greater than 5% significant level, this indicates that the
residuals of the ASARIMA(2,1,1)1, are not correlated up to
48" lag. Hence the model is adequate.
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Fig.5. Plot of ACF of Residuals (with 5% significance limits for
autocorrelations)
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The ACF and PACF of residuals in Figure5 and Figure6
respectively for the Enugu rainfall data showed no significant
spikes (the spikes are within the confidence limits) indicating
that the residuals are uncorrelated. Therefore, the
ASARIMA(2,1,1)12 model appears to fit well and can be used
to make forecasts for Enugu monthly rainfall.
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Fig.7. Time plot of forecast and actual values

The generated forecast values in Figure7 above showed
close relation with the actual values. Hence, it can be said
that the fitted model has performed pretty good.

C. Discussion of Results

In a regular stationary time series variable with seasonal
nonstationary behaviour, such as that of Enugu monthly
rainfall (EMR) pattern, the comparison study using AIC
reveals that ASARIMA(2,1,1):. performed better than all the
sub-classes of SARIMA(p,d,q)*(P,D,Q)s model. Modified
Box-Pierce (Ljung-Box) Chi-Square statistic indicates that
the residuals of the ASARIMA(2,1,1)1, are not correlated up
to 48™ lag. Again, the ACF and PACF of the model residuals
are uncorrelated too and the forecast values are very close,
indicating the adequacy of the fitted model.

However, unlike past studies by researchers have clustered
on the application of SARIMA model introduced by Box and
Jenkins(1979), the Adjusted SARIMA introduced here, has
spiced up a new dimension in the modeling of seasonal
behaviour of variables that are adjudged to be regularly
stationary (where d = 0) and seasonally nonstationary(where
D =1).

IV. CONCLUSION

The paper compared SARIMA and Adjusted SARIMA
models in a regular stationary time series with seasonal
nonstationary behaviour such as Enugu monthly rainfall data,
and the finding indicates that ASARIMA(2,1,1)12 subclass is
better than all SARIMA sub-classes as reported by AIC.

Therefore, it can be recommended that for such pattern of
time series, ASARIMA is preferred due to its ability to
reduce parameter redundancy and sum of square errors in the
model.
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