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Abstract—The paper compares SARIMA and adjusted 

SARIMA(ASARIMA) in a regular stationary series where the 

underlying variable is seasonally nonstationary.  Adopting 

empirical rainfall data and Box-Jenkins iterative algorithm that 

calculates least squares estimates, Out of 11 sub-classes of 

SARIMA and 7 sub-classes of ASARIMA models, AIC chose 

ASARIMA(2,1,1)12 over all sub-classes of 

SARIMA(p,0,q)x(P,1,Q)12 identified. Diagnostic test indicates 

absence of autocorrelation up to the 48th lag. The forecast values 

generated by the fitted model are closely related to the actual 

values. Hence, ASARIMA can be recommended for regular 

stationary time series with seasonal characteristics and where 

parameter redundancy and large sum of square errors are 

penalized. 

 
Index Terms—AIC, ASARIMA model, rainfall, seasonal 

nonstationary time series 

I. INTRODUCTION 

The use of seasonal autoregressive integrated moving 

average (SARIMA) terms for monthly or quarterly data with 

systematic seasonal movements was recommended by[7]. 

Technical details can be obtained from the aforementioned 

citation. Situation could arise when the underlying variable 

of interest is regularly stationary but it is characterized by 

cyclical pattern that is seasonally nonstationary and needs 

seasonal differencing. Time series variables with such 

characteristics can be better modelled with Adjusted 

SARIMA(P,D,Q)s rather than SARIMA(p,d,q)x(P,D,Q)s 

model.However, for such time series, 

SARIMA(p,d,q)x(P,D,Q)s increases the sum of square 

residuals due to some redundant parameters and the 

autocorrelation of the model residuals may be strong in 

higher lag orders. These are the advantages of Adjusted 

SARIMA over SARIMA model. Adjusted SARIMA models 

are frugal in parameter representation. Rainfall is one of the 

most important natural factors that determine the agricultural 

production in and across the globe, particularly in Nigeria. 

The variability of rainfall and the pattern of extreme high or 

low precipitation are very important for agriculture as well as 

the economy of the state. Even the global climatic change has 

increased the quest for more research on the subject matter 

due to high flood risk disaster at the peak of rainy season. 

Enugu State is one of the states in the eastern part of 

Nigeria located at the foot of the Udi Plateau, a tropical rain 

forest zone with a derived savannah. The state shares borders 

with Abia State and Imo State to the south, Ebonyi State to 

the east, Benue State to the northeast, Kogi State to the 

northwest and Anambra State to the west. Enugu has good 
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soil-land and climatic conditions all year round, sitting at 

about 223 metres (732 ft) above sea level, and the soil is well 

drained during its rainy seasons.Enugu is in the tropical rain 

forest zone with a derived savannah, with humidity highest 

between March and November [13]. For the whole 

of Enugu State the mean daily temperature is 26.7 °C (80.1 

°F).  The mean temperature in Enugu State in the hottest 

month of February is about 87.16 °F (30.64 °C), while the 

lowest temperatures occur in the month of November, 

reaching 60.54 °F (15.86 °C). The lowest rainfall of about 

0.16 cubic centimetres (0.0098 cubic inch) is normal in 

February, while the highest is about 35.7 cubic centimetres 

(2.18 cu in) in July. Enugu State had a population of 

3,267,837 people at the census held in 2006 (estimated at 

over 3.8 million in 2012). 

A lot of researchers have paid considerable attention 

towards modelling and forecasting the amount of rainfall 

pattern in various places. For instance, [14] fitted a 

SARIMA(0, 1, 1)x(0, 1, 1)12  monthly rainfall in Tamilnadu, 

India. [16] fitted the SARIMA models of orders (1, 1, 2)x(1, 

1, 1)12 and (4, 0, 2)x(1, 0, 1)12 respectively for monthly 

rainfall in Malaaca and Kuantan in Malaysia. [1] examined 

the SARIMA model suitable  for rainfall prediction in the 

Brong Ahafo (BA) Region of Ghana using a data from 1975 

to 2009. The results revealed that the region experience much 

rainfall in the months of September and October, and least 

amount of rainfall in the months of January, December and 

February. They fitted SARIMA (0,0,0)×(1,1,1)12, model for 

predicting monthly average rainfall figures for the Brong 

Ahafo Region of Ghana. 

 [12] modelled monthly rainfall in Port Harcourt, Nigeria, 

using seasonal SARIMA (5, 1, 0)x(0, 1, 1)12 model. The time-

plot shows no noticeable trend. The known and expected 

seasonality is clear from the plot. Seasonal (i.e. 12-point) 

differencing of the data is done, then a nonseasonal 

differencing is done of the seasonal differences. The 

correlogram of the resultant series reveals the expected 12-

monthly seasonality, and the involvement of a seasonal 

moving average component in the first place and a 

nonseasonal autoregressive component of order 5. Hence the 

model mentioned above. The adequacy of the modelled has 

been established. [15] modelled quarterly rainfall in Port 

Harcourt, Nigeria, as a SARIMA(0, 0, 0)x(2, 1, 0)4 model.  

[3] examined the time series analysis on rainfall in Oshogbo 

Osun State, Nigeria, using monthly data of rainfall between 

2004-2015. The time plot reveals that the rainfall data show 

high level of volatility characterized by seasonal and 

irregular variations. And the logistic model applied showed 
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to be better and then used to forecast the rainfall for the next 

2 years. [5] examined the modelling of mean annual rainfall 

pattern in Port Harcourt, Nigeria using ARMA(p,q) model.. 

The data on rainfall used covered the period of 1981 to 2016. 

Sum of squares deviation forecast criteria (SSDFC) was 

adopted to select the best performing sub-classes of 

ARMA(p, q) that fits the data. Among ARMA(1, 1), 

ARMA(1, 2) ARMA(2, 1) and ARMA(2, 2) models 

estimated, SSDFC chose ARMA(1, 2) as the best performing 

model. The selected model were supported by AIC and BIC 

respectively. And concluded that ARMA(1, 2) can be used to 

predict long term quality of water foragriculture and 

hydrological purpose and to create long term awareness 

against flood and control strategy for Port Harcourt. 

[6] modelled monthly rainfall pattern in Imo state using 

seasonal autoregressive integrated moving average 

(SARIMA) model with univariate monthly rainfall data 

spanning from 1981M1-2017M12. Sum of square deviation 

forecast criterion (SSDFC) was used to compare nine (9) 

different sub-classes of SARIMA( p,d,q)x(P,D,Q)12 models 

identified. And the result indicated that  

SARIMA(0,0,0)x(1,1,1)12 is more appropriate in predicting 

monthly rainfall in the state. 

The modelling of monthly rainfall in any state is essential 

in understanding the temporal and spatial variability which is 

very important in flood risk management, irrigation and 

surface water management and so on. Moreover, the need to 

diversify the economy towards agricultural base in Nigeria 

has made it necessary to model seasonal pattern of rainfall in 

the state for agricultural planning. Hence, this study 

examines the best fitted model between seasonal ARIMA 

(SARIMA) model and adjusted seasonal ARIMA 

(ASARIMA) model for rainfall forecast in Enugu State. 

The study presents a simple analytical model adjusted 

from SARIMA process. The remaining part of the paper is 

arranged as follows; section two presents the materials and 

methods, section three presents data analysis and results and 

section four deals with conclusion. 

II. MATERIALS AND METHODS 

This section highlights the methods and sources of data 

collection, variable measurement, method of unit root test, 

model specification, and model identification, method of data 

analysis, model comparison techniques and diagnostic 

checks. 

A. Source of Data and Variable Measurement 

The monthly rainfall data was obtained from central bank 

of Nigeria (CBN) (2018) statistical bulletin. The univariate 

time series data collected covered the period of 1981M1-

2017M12 (432 observations of monthly  rainfall data). 

Rainfall is usually measured in millimetre using rain gauge. 

B. SARIMA Model Specification 

If the time series  tX  is nonstationarity due to the 

presence of one or several of five conditions: outliers, 

random walk, drift, trend, or changing variance, it is 

conventional that first or second differencing (d) is necessary 

to achieve stationarity. Hence, the original series is said to 

follow an autoregressive integrated moving average model or 

orders p, d and q denoted by ARIMA(p, d, q) of the form 

tt

d uLBXLA )()( =
  (1)

 

If the series  tX  exhibits seasonal patterns of 

nonstationarity, this may be detected using time plot, 

correlograms or even unit root test. And according to [7] 

Seasonal ARIMA models sometimes called SARIMA 

models has the general form 
SQDPqdpSARIMA ),,(),,(  and 

it is given as  
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where A(L) is the autoregressive (AR) operator, given by 

)(LA =
p

pLL  −−− 11  and )(LB is the moving 

average (MA) operator, given by )(LB =

q

qLL  −−− 11 . For L denotes the backshift operator.  

( )sL  and ( )sL  are lagged  seasonal AR and MA 

operators of order P and Q respectively. The operator 
d  

denotes the difference operator defined by  Ld −= 1 and

2d .  The 
D

s  represents the seasonal difference 

operator defined by 
s

s L−= 1  and D is the seasonal 

differencing order.  The seasonal differencing ( )sL−1  is 

called the simplifying operator, which renders the residual 

series stationary and amenable to further analysis. 

C. Adjusted SARIMA Model 

The SARIMA model in (2) is the combination of 

nonseasonal AR and MA operators of order p and q and 

seasonal AR and MA operators of order P and Q. If a 

univariate time series is stationary in non-seasonal 

component (where d=0) and exhibits a purely seasonal 

pattern that is nonstationary (where D=1). It could be 

parsimoniously better to only fit the seasonal AR and MA 

operators of order P and Q. In such cases, it is appropriate to 

assume that 1B(L) , 1)( ==LA and  d=0   so that (2) can 

be of the form; 

tsts uLX )()(Ls =
  (3) 

where )( sL is the seasonal autoregressive (SAR) operator, 

given by PsPss LLL  −−−=  111)(  and )( sL is 

the seasonal moving average (SMA) operator, given by 

QsQss LLL  −−−=  111)(  .Generally, the 

Adjusted SARIMA(P,D,Q)s model which hereafter is known 

as ASARIMA(P,D,Q)s model with the inbuilt constant term 

is specifically of the form; 
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where  is the constant parameter and s  is the seasonal 

index. ASARIMA(P,D,Q)s model is  special case of 

SQDPqdpSARIMA ),,(),,(  model.  

D. Model Identification 

The ACF of an MA(q) model cuts off after lag q whereas 

that of an AR(p) model is a combination of sinusoidals dying 

off slowly. On the other hand, the PACF of an MA(q) model 

dies off slowly whereas that of an AR(p) model cuts off after 

lag p. The AR and MA models are known to exhibit some 

duality relationships. Parametric parsimony consideration in 
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model building entails the use of the mixed ARMA fit in 

preference to either the pure AR or the pure MA fit.  

Note that SARIMA can be fitted irrespective of whether 

the underlying variable is seasonally stationary or not.The 

differencing operators 0=d for stationary series and for 

nonstationary series d could be 1 or 2 depending on the order 

of integration of the variable under study. The seasonal 

difference D may be chosen to be at most equal to 1. The 

nonseasonal and seasonal AR orders p and P are fitted by the 

nonseasonal and the seasonal cut-off lags of the partial 

autocorrelation function (PACF) respectively. Similarly the 

nonseasonal and the seasonal MA orders q and Q are fitted 

respectively by the nonseasonal and seasonal cut-off points 

of the ACF. 

E. Conditions for ASARIMA(P,D,Q)s Model  

The following conditions should lead to the adoption of 

ASARIMA(P,D,Q)s  model; 

1) The underlying univariate time series must be non-

seasonally stationary (d=0) and exhibits cognizable 

seasonal pattern. Note, seasonal differencing(D) may be 

0 or 1. 

2) The ACF must reveal seasonal oscillation with 

significant spikes at every kth lag, here isk =   and 

Ki ,2,1 = . 

3) The PACF tends to cut-off at every kth  lag and cut-in. 

4) If the spikes in (iii) tails off at every kth  lag consider 

fitting ASARIMA(P,D,0)s  

5) If the spikes in (iii) do not tails off at every kth  lag 

consider fitting ASARIMA(0,D,Q)s  

6) If the spikes indicate mixture of (iv) and (v) consider 

fitting ASARIMA(P,D,Q)s 

7) Use some information criteria such SSDFC, AIC BIC, 

SC etc to select the best fitted model. 

F. ADF Unit Root Test 

ADF unit root test helps to check the order of integration 

of the variables under study. The unit root test here, is based 

on Augmented Dickey Fuller (ADF) test and is of the form 

 

                         
1
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i
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−−   (5) 

where k is the number of lag variables. In (5) there is intercept 

term, the drift term and the deterministic trend. The non 

deterministic trend term removes the trend term in (5). And 

it can be carried out with the choice of removing both the 

constant and deterministic trend term in the above regression. 

ADF unit root test null hypothesis 0:0 =H  and 

alternative 0: aH . According to [7], if the ADF test 

statistic is greater than 1%, 5% and 10% critical values, the 

null hypothesis of a unit root test is accepted.  ERS unit root 

test will used to consolidate the result provided by ADF test. 

See the technical details in [11]. 

 

G. Model Comparison 

There are several model selection criteria in literature such 

as; Bayesian information criterion(BIC),Aikaike information 

criterion(AIC), residual sum of squares and so on. If n is the 

sample size and RSS is the residual sum of squares, then, BIC 

and AIC are given as follows; 

)/(ln)/ln(2 nnknRSSkBIC ++=
 

 (6) 

)/ln(2 nRSSnkAIC +=    (7) 

where, n is the sample size, k is the number of estimated 

parameters (for the case of regression, k is the number of 

regressors) and RSS is the residual sum of squares based on 

the estimated model. However, it is good to note that both 

BIC and AIC are affected by the number of parameters 

included to be estimated in a model. For the case of BIC, it 

penalizes free parameters while AIC becomes smaller as the 

number of free parameters to be estimated  increases. But for 

this study, model selection will be based on AIC. The sum of 

squares deviation forecast criterion introduced by [4] will be 

used to check models output performance for 150 forecast 

lead time . And it is of the form; 
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Where l is the lead time, m is the number of forecast values 

to be deviated from the actual values (m should be reasonably 

large), ),( ilty  is the actual values of the time series 

corresponding to the 
thi position of the forecast values and 

),(,
ˆ

ilty is the forecast values corresponding to the ith position 

of the actual values. In comparison, the model with the 

smallest value of SSDFC is the best output performing model 

that can describe, to the closest precision, the behavior of the 

underlying fitted model. 

H. Model Estimation 

The coefficients are estimated using an iterative algorithm 

that calculates least squares estimates. At each point of 

iteration, the back forecasts are computed and sum of squares 

error (SSE) is calculated. For more details, see [8]. 

 

III.  DATA ANALYSIS AND RESULTS 

This section presents the time series plot of Enugu monthly 

rainfall data, results of ADF unit root test, plots of ACF and 

PACF and estimates of SARIMA(p,d,q)×(P,D,Q)s  model.  
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Fig.1. Time plot of EMR (1981M1 – 2016M12) 

 

The plot of monthly rainfall in Figure1 exhibits seasonal 

nonstationary pattern. It is also observable that the time series 

plot lacks trend with the highest precipitation of 508.3 

Millimeters in July 1990 and lowest precipitation of 0.5 

Millimeters in January and February the same year. 
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Fig.2. Time plot of Seasonally differenced EMR (1981M1 – 2016M12) 

 

The seasonally differenced EMR data in Fig.2 is 

seasonally stationary with most of the data concentrated 

around zero. 

 
TABLE I. ANALYSIS OF ORDER OF INTEGRATION OF EMR 

 

Test 

 

 

 

Rainfall 

 

DT 

 

 

 

Lags 

 

 

Test 

Value 

Critical 

Values 

 

 

Remark 1% 

5% 

10% 

 
ADF 

 
EMR 

 
C 

 
11 

 
-3.8511 

-3.4457 
-2.8682 

-2.5704 

I(0) 
significant 

under 5% 

 

ERS 

 

EMR 

 

C 

 

5 

 

2.4747 

1.9900 

3.2600 
4.4800 

I(0) 

significant 
at 5% 

Note that  DT  represents ‘deterministic term’. 

 

The results of ADF and ERS unit root tests in Table I 

above generally indicate that EMR variable is integrated 

order zero I(0), significant at 5% level. Hence, the monthly 

rainfall under investigation is stationary. Having the EMR 

variable exhibiting stationarity, then, it will be modeled using  

seasonal  autoregressive  moving  average  SARIMA 

(p, 0, q)×(P,D,Q)s model. 
 

A. Correlogram 

The correlogram presents the plots of autocorrelation 

function (ACF) and the partial autocorrelation function 

(PACF) for model identification as presented in Figure3 and 

Figure4 below. 

 

65605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

t
o

c
o

r
r
e

la
t
io

n

 
Fig.3. Plots of ACF EMR (with 5% significance limits for the 

correlogram) 
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Fig.4. Plots of PACF for EMR (with 5% significance limits for the 

correlogram) 

 

The plot of autocorrelation function in Figure3 exhibits 

presence of seasonal effect. The cyclical correlogram with a 

seasonal frequency suggests fitting a seasonal ARMA model 

to the rainfall data. The result indicates the need for seasonal 

differencing in the model.  The time plot revealed   

seasonality in the rainfall variable. But where this is not too 

clear via time plot, the autocorrelation function (ACF) could 

reveal the value of s, as the significant lag of the ACF.  

There appear to be annual or 12-month spikes in the ACF 

and PACF as shown in Figure3 and Figure4. The ACF clearly 

exhibits this prima facie evidence of seasonal nonstationarity. 

The PACF reveals the seasonal spikes at lags 12, 24 36 and 

48. Slow attenuation of the seasonal peaks in the Figure4 

ACF signifies seasonal nonstationarity. The 12-month PACF 

periodicity can be seen in the periodic peaks at every 12th lag 

up to 48th lag evocatiing of seasonal differencing at lag 12. 

 

B. Model Comparison 

This section presents a comparison of 27 possible models 

using SSDFC as presented in Table II below; 

 
TABLE II. MODEL SELECTION USING AIC 

Model AIC BIC SSDFC 

SARIMA(1,0,0)×(1,1,1)12 3557.36 16.2723 3114.06* 

SARIMA(2,0,0)×(1,1,1)12 3559.35 18.2863 3116.75 

SARIMA(3,0,0)×(1,1,1)12 3560.40 20.2982 3123.90 

SARIMA(1,0,1)×(1,1,1)12 3558.85 18.2852 3118.40 

SARIMA(2,0,1)×(1,1,1)12 3560.18 20.2977 3126.79 

SARIMA(3,0,1)×(1,1,1)12 3559.91 22.3065 3123.78 

SARIMA(1,0,3)×(1,1,1)12 3559.78 22.3061 3123.79 

SARIMA(1,0,0)×(2,1,1)12 3555.24 18.2768 3238.72 

SARIMA(0,0,1)×(1,1,1)12 3557.34 16.2722 3117.09 

SARIMA(0,0,2)×(1,1,1)12 3559.31 18.2862 3119.80 

SARIMA(0,0,3)×(1,1,1)12 3560.48 20.2984 3121.29 

ASARIMA(0,1,1) 12 3553.90 12.2455* 3116.94 

ASARIMA(0,1,2) 12 3551.61 14.2496 3186.91 

ASARIMA(0,1,3) 12 3554.10 16.2647 3218.03 

ASARIMA(1,1,1) 12 3555.91 14.2595 3116.73 

ASARIMA(2,1,1) 12 3550.12* 16.2555 3229.91 

ASARIMA(1,1,2) 12 3551.88 16.2596 3119.28 

ASARIMA(2,1,2) 12 3551.24 18.2676 3157.69 

 

The 18 models in Table II above showed at least no serial 

correlation in the model residuals up to 12th lag using 

Modified Box-Pierce statistic. Model comparison using AIC 

indicates that ASARIMA(2,1,1)12 is preferred to the other 

sub-classes of SARIMA(p,d,q)×(P,D,Q)12 and ASARIMA 

(P,D,Q)12 models since it has the smallest value of AIC. 

Though the chosen information criterion is AIC,   BIC also 

preferred ASARIMA to SARIMA. However, based on 

output performance such as forecast (for 150 lead time), 

SSDFC prefers and SARIMA(1,0,0)×(1,1,1)12 followed by 

ASARIMA(1,1,1)12 .  
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TABLE III. FINAL ESTIMATES OF ASARIMA(2,1,1)12 PARAMETERS 

 

Differencing: 0 regular, 1 seasonal of order 12, Number of observations:  

Original series 432, after differencing 420, Residuals:    SS =  1571863 

(backforecasts excluded), 
MS =  3779  DF = 416 

 

The model result in Table III shows that the parameters 

SMA  lag 12 and SAR at lag 24 are significant under 5% 

and 10% respectively.  The ASARIMA(2,1,1)12 model is of 

the form;  
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TABLE IV. MODIFIED BOX-PIERCE (LJUNG-BOX) 

CHI-SQUARE STATISTIC 

Lag 12 24 36 48 

Chi-Square 13.4 24.2 45.5 53.4 

DF 8 20 32 44 

P-Value 0.099 0.058 0.058 0.0156 

 

The result of Table IV shows that the probability of 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic are 

all greater than 5% significant level, this indicates that the 

residuals of the ASARIMA(2,1,1)12 are not correlated up to 

48th lag. Hence the model is adequate. 
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Fig.5. Plot of ACF of Residuals (with 5% significance limits for 

autocorrelations) 
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Fig.6. Plot of PACF of Residuals (with 5% significance limits for 

autocorrelations) 

 

The ACF and PACF of residuals  in Figure5 and Figure6 

respectively for the Enugu rainfall data showed no significant 

spikes (the spikes are within the confidence limits) indicating 

that the residuals are uncorrelated. Therefore, the 

ASARIMA(2,1,1)12 model appears to fit well and can be used 

to make forecasts for Enugu monthly rainfall. 
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Fig.7. Time plot of forecast and actual values 

 

The generated forecast values in Figure7 above showed 

close relation with the actual values. Hence, it can be said 

that the fitted model has performed pretty good.  

 

C. Discussion of Results 

In a regular stationary time series variable with seasonal 

nonstationary behaviour, such as that of Enugu monthly 

rainfall (EMR) pattern, the comparison study using AIC 

reveals that ASARIMA(2,1,1)12 performed better than all the 

sub-classes of  SARIMA(p,d,q)×(P,D,Q)s model.   Modified 

Box-Pierce (Ljung-Box) Chi-Square statistic indicates that 

the residuals of the ASARIMA(2,1,1)12 are not correlated up 

to 48th lag. Again, the ACF and PACF of the model residuals 

are uncorrelated too and the forecast values are very close, 

indicating the adequacy of the fitted model. 

However, unlike past studies by researchers have clustered 

on the application of SARIMA model introduced by Box and 

Jenkins(1979), the Adjusted SARIMA introduced here, has 

spiced up a new dimension in the modeling of seasonal 

behaviour of variables that are adjudged to be regularly 

stationary (where d = 0) and seasonally nonstationary(where 

D =1). 

IV. CONCLUSION 

The paper compared SARIMA and Adjusted SARIMA 

models in a regular stationary time series with seasonal 

nonstationary behaviour such as Enugu monthly rainfall data, 

and the finding indicates that ASARIMA(2,1,1)12 subclass is 

better than all SARIMA sub-classes as reported by AIC. 

Therefore, it can be recommended that for such pattern of 

time series, ASARIMA  is preferred due to its ability to 

reduce parameter redundancy and sum of square errors in the 

model.  

 

 

 

 

Type Coef SECoef T P 

SAR  12 0.0047 0.0518 0.09 0.928 

SAR  24 24 0.0519 -1.89 0.060 

SMA  12 12 0.0234 40.66 0.000 

Constant 1.0529 0.2195 4.80 0.000 
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