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Abstract — Let g  be the Laplace Beltrami operator on a manifold M with Dirichlet (resp., 

Neumann) boundary conditions. We compare the spectrum of on a Riemannian manifold for 

Neumann boundary condition and Dirichlet boundary condition. Then we construct an effective 

method of obtaining small eigenvalues for Neumann's problem. 
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I. INTRODUCTION   

In daily life, physical phenomena such as heat diffusion, wave propagation, quantum mechanics are 

described by Laplacian operators. In this paper, to make things more generic, we will stick to the level of 

connected Riemannian manifolds ( ),gM  associated with Riemannian metric g .Throughout this paper we 

assume that the manifold M with boundary M .The Laplacian we will consider is given by the form: 
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g  is called Laplace Beltrami operator where ( )1,..., nx x  are local coordinates in M .  

From now on, we examine the spectrum of 
g− on M , we deal the eigenvalue problem: 

 

 .g − =  (2) 

 

For ( )2 .C M   

Under the Dirichlet condition 0
M




= ,the spectrum consists of real and discrete eigenvalues: 

 

 1 20 ( ) ( ) .... .M M    →   (3) 

 

The Neumann boundary condition i.e., 0
M

n





 
= 

 
 where n denotes the exterior normal to the 

boundary. 

The spectrum ( )g − consists of discrete and real sequence: 

 

 1 20 ( ) ( ) .... .M M =   →   (4) 

 

With the eigenvalues repeated according to their multiplicity. See reference [1] for the proof.  

Notation. Sometimes, we will write ( )D

k M  and ( )N

k M to avoid confusion between the eigenvalues 

with respect to the Dirichlet boundary conditions and Neumann boundary conditions.  

Next, the minimax characterization is presented in reference [2], which is a fundamental tool for 

examining the spectrum using geometry. 
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The minimax characterization is given by the formula: 
 

 ( ) inf sup : 0, .
k

k k
V

R V   =    (5) 

 

Where ( )R   is the Rayleigh quotient of :  
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and 
kV  runs through k- dimensional subspaces of ( )1

0H M for Dirichlet eigenvalue problem and the 1k +  

dimensional subspaces of ( )1H M  for the Neumann eigenvalue problem.  

I would like to mention a very interesting book about Riemannian manifolds by Petersen, Peter in 

reference [3]. Also interested investigators in spectral theory can look at reference [4]. 

In this paper, the first section presents properties of the Laplace-Beltrami spectral theorem. For the 

problem of hearing the length of a guitar string, the spectral interpretation is presented in the second section. 

The third section compares the Dirichlet and Neumann problems. 

 

II. PROPERTIES IN SPECTRAL THEOREM FOR THE LAPLACE–BELTRAMI 

Let ( ),M g  be a compact Riemannian manifold with boundary M . Reference [5] shows that by using 

Green's formula: 
 

 , .g g g v gg

M M M

dV dV d      


  = −   +     (7) 

 

For all ( )1C M  and ( )2C M  ,we conclude that the relation for the case of manifold without 

boundary: 
 

 .g g g g

M M

dV dV   =    (8) 

 

Hence, the operator 
g−  is symmetric. We have also: 

 

 
2

0.g g g

M M

dV dV  −  =     (9) 

 

therefore the operator g−  is positive. 

Consequently, let ,  be two eigenvalues such that   and let ,u v be respective eigenfunctions (i.e., 

gu u− = and gv v− = . Since
g−  is symmetric, we have: 

 

2 2
, ,g gL L

u v u v− = −  

 

i.e., ( ) 2, 0
L

u v − = . 

Therefore, if we denote by ( )E   the eigenspace corresponding to the eigenvalue  , the spaces ( )E 

and ( )E  are 2L -orthogonal. Moreover, every eigenvalue is non-negative. Indeed, let  be an eigenvalue 

and let u be an eigenfunction of  . Then: 
 

22
, 0.g LL

u u u− =   

 

so 0.    
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Now ,the minimax formula doesn’t help calculating
k , but it is very useful to find an upper bound for 

instance , in the case of the Neumann (or Dirichlet) problem, for any given (k + 1) dimensional of ( )1

0H M  

(or. k dimensional) vector subspace V  of ( )1H M  , that is: 

 

 ( ) ( ) sup : 0, .k M R V       (10) 

 

This gives immediately an upper bound for ( )k M if it is possible to estimate the Rayleigh quotient

( )R  of all the functions V  .Note that there is no need to calculate the Rayleigh quotient, it suffices to 

estimate it from above. 

For reviewing some results concerning in spectral theory of the Laplacian on Riemannian manifolds see 

references [6]-[9]. 

Proposition. In the case of Neumann boundary conditions the first eigenvalue is zero i.e., 1 0 = and the 

constant 1M x  is the eigenfunction corresponding to 1 .In the case of the Dirichlet boundary 

condition the first eigenvalue satisfies 1 0  . 

Proof. By the spectral theorem, 1 0  , and minimax principle we also get: 
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Since the constant function 1x  belongs to the space ( )1H M and 
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We conclude that 1 0   ,therefore 1 0 = . Moreover, ( )1 0g− = . 

For the Dirichlet problem and by contradiction assume that 1 0 = ,there exists a non-trivial function u

such that ( ) 0g u− = and u vanishes on the boundary of M .Therefore, 

 

0.
g gM
uudV− =  

 

Hence integrating by parts, we get: 
 

2

0.
gM

u dV =  

 

Thus u  is constant on M and from the boundary conditions it follows that 0u =  on M , which is a 

contradiction. 

 

III. HEARING THE LENGTH OF GUITAR STRING WITH DIRICHLET BOUNDARY CONDITION 

Consider M is an interval  0, L with a Dirichlet boundary condition. This example is a model of vibration 

of a fixed string in dimension one (this subsection is described as of direct problem in spectral geometry 

see reference [10]). The spectrum depends only on the length of string, mass, and tension. In this paper we 

assume that the density mass and tension are constant 1. 

For notational simplicity we write   instead of 
g for Euclidean domains. 

Now, let  ( )2 0,C L  ,where ( ) ( )0 0L = = . 

The eigenfunctions are sin
k

x
L

 
 
 

for 1k   with eigenvalues 
2

k

k

L


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 
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Fig. 1. Waves of guitar string. 

 

The way in which string vibrates is described by wave equation, meaning that ,if x any point in string 

 0, L at the time t , the height ( ),u x t satisfies: 
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The expression of solution is: 
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where 
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The coefficients are ,k ka f = , g,k kb =  for the functions ( ) ( ),0f x u x= , ( ) ( ),0tg x u x=  . 

Consider the Fourier transform of  : 

 

( )( ) ( ) .ixF x e   


−

−

=   

 

Then for ( ) ( )sink kx x = ,we have: 

 

( )( ) ( ) ( )( ).k k kF
i


       = − − +  

 

Since, ( )sin
2

k ki x i x

k

e e
x

i

 


−

=  and ( )( ) ( )2ki x

kF e


   = − . 

If you pluck a guitar string, then you get a wave of the form: 
 

( )( ) ( ) ( ) ( ) ( )( )
1

., , .k k k

k

F u t u x t t
i


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

=

= = − − +  

 

Remark. For Neumann boundary condition, Laplacian is given by   = −  and is the spectrum is 

given by 
2 2

2
,k 0,1,2,..k

k

L


 = = The eigenfunction corresponding to k is ( ) cosk

k
x x

L
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IV. COMPARISON BETWEEN DIRICHLET AND NEUMANN PROBLEM 

Let ( ),M g be a Riemannian manifold and ,A B  two submanifolds of same dimension n . If A B ,then 

we have that ( ) ( )D D

k kA B   for every integer 1k   .For the Dirichlet problem and by using the minimax 

characterization of the spectrum,we have: each eigenfunction of A  can be a continuously extended by 0 on

B  and may be used as a test function for the Dirichlet problem on B . Let us construct an upper bound for 

( )D

k B : for kV , we choose the vector subspace of ( )1

0H B generated by an orthonormal basis 1,..., k   of 

eigenfunctions of A  extended by 0 on B . Clearly, these functions vanish on B  and they are C  on A

and 
c

B A . They are continuous on A  . 

Let 1 1 ... n n    = + + . We have: 

 

( ) 2 2 2

1 2, ... .k    = + + +  

 

Then 
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It follows that ( ) ( )( ), ,D

i i i i iA      = and ( ), 0i j   = if i j .We have 

( ) ( ) ( ) ( )( )2 2 2 2

1 1 1, ... ... .D D D

k k k kA A A          = + +  + +  We conclude that ( ) ( ),D

kR A   and we 

have ( ) ( ).D D

k kB A   We realize from the proof that a test function for the Dirichlet problem is also a test 

function for the Neumann problem, 
 

( ) ( )1 .N D

k kB A  +  

 

and, in particular, taking A B M= = ,we have: 
 

( ) ( )1 .N D

k kM M  +  

 

We can construct A B  with as many eigenvalues as small as follow:  
Motivated by construction of small eigenvalues for the Neumann problem we use the Cheeger dumbbell 

construction: 

Consider two n-balls of fixed volume A connected by a small cylinder C of length 2L and radius  .We 

denote by   this domain. The first nonzero eigenvalue of   converges to 0 as  tends to 0. Let us 

shows that 1  converges to 0. 

We define the function f on the first ball with value 1, f takes the value 1−  on the second ball and 

decreasing linearly along the cylinder. 

The maximum norm of its gradient is 1/ L . 

By construction (and for simplicity we assume that the manifold is symmetric), we have 0.g

M

fdV =   

We introduce the vector space V  generated by f and by the constant 1.  

For h V ,we can write , ,h a bf a b= +   and 

 

( )2 2 2 2 ,h dx a Vol b f dx

 



 

=  +   

 

2 22 .h dx b f dx

  

 =    

 

By the minimax characterization, we have ( ) 1 sup : h 0,hR h V     and we get ( ) ( )1 R f   .  

The function f  varies only on the cylinder C and its gradient has norm 1/ L .This implies 
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( )( )
2 21/ .g

M

df dVol L Vol C



=  

 

Moreover, because 2f takes the value 1 on both balls of volume ,A  we have: 

 

2 2 .f dx A




 

 

This implies that the Rayleigh quotient of f is bounded above by 

2
/

2

VolC L

A
 which tends to 0  as  does. 

We want to focus on the Neumann problem, since this case is completely different. We will show by 

example that we have no monotonicity for the Neumann problem. 

Example. Let M be a Euclidean domain. There exists a domain A M  with a smooth boundary such 

that the k first eigenvalues of A for the Neumann problem are arbitrarily small. To do this choose A  a 

Cheeger dumbbell, with k+1 balls joined by very thin cylinders. We see immediately that the k first 

eigenvalues can be made as small as we wish, with the same calculations as above. 

 

V. CONCLUSION 

We analyzed the monotony property of the Neumann problem and the Dirichlet problem. we interpreted 

geometrical consequences of spectrum of the length of a guitar string. 
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