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Parametric Sensitivity Analysis of A
Compressible Multiphase Flow Model in
Porous Medium: Application to the Tsimiroro
Madagascar Oil Reservoir
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Abstract — Modeling and numerical methods are two very important fields in physics and
engineering sciences. In fluid mechanics, they allow us to study various complex problems and to
make predictions of complex phenomena. However, in some cases like the field of petroleum
engineering, many parameters like absolute permeability, relative permeability, porosity,
capillary pressures, etc. are difficult to measure and / or estimate with certainty. The parametric
sensitivity analysis of models provides an overview of the most influential parameters of a model
and thus enables the model to be optimized. The study carried out in this work goes in this
direction and has made it possible to identify the most influential parameters. The results
obtained show that the most influential parameters of the model are the geometric characteristics
of the reservoir, porosity and permeability, as well as the injection pressure in the wells.

Keywords — Analysis of variance, multiphase flow, oil reservoir, porous media, sensitivity
analysis.

I. INTRODUCTION

In the fields of engineering sciences and physics, modeling is an essential step for understanding systems.
The model complexity depends on the observed phenomena and the systems to be modeled, but in general
physical models are complex. Uncertainties related to the input parameters of a model are among the causes
that can make a model complex. Sensitivity analysis is proving to be a reliable tool for evaluating the
relationship between inputs and outputs of a model or system. It is used in several areas of the engineering
sciences for the optimization and evaluation of systems. In the literature there are many methods of
sensitivity analysis, each of which has its advantages and disadvantages. Reference [1], present most of the
global sensitivity analysis methods that are most used in the engineering sciences. Reference [2] use the
FAST methods and the analysis of variance method to study the sensitivity of the input parameters of a
model that simulates a natural convection decay heat removal system. The authors show that the use of
variance analysis is more efficient if the distributions of the output parameters of the model are normal.
The study by [3], combines the variance-based method and the RBD-FAST method to make an overall
sensitivity analysis of a nonlinear mathematical model. The authors show that this combination is
achievable only when a shared sampling strategy is used. To do this, the authors apply a radial design
approach with Sobol's quasi-random sequences to generate a basic sample. The results of their study show
that the method can be used for an overall sensitivity analysis of a nonlinear model without assuming any
restriction on the model except that the model input parameters must be independent and uniformly
distributed. Another interesting work carried out by [4], proposes a global sensitivity analysis tool called
GOSAT for the analysis of complex models. The method implemented in this tool is a method derived from
the FAST method, proposed by [5] and improved by [6].

Flow in porous media occupies a very important place in the field of energy, environment and process
engineering. Studying physical problems related to these environments always requires very complex
mathematical models with many uncertainties. Thus, the use of sensitivity analysis is necessary to study
the influence of parameters on the output of such models. Reference [7] use a method based on singular
value decomposition (SVD) to study the influence of the input parameters of a flow model in porous media
in the case of nuclear waste disposal. The authors show that in comparison with statistical approaches, this
method has a low computational cost and makes it possible to study the variability of the results of the
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sensitivity analysis due to variations in the input parameters of the model, and thus provide a criterion of
quality for the validity of more comprehensive global probabilistic approaches. In their work, [8], carried
out a sensitivity analysis study of a multiphase flow in porous geological media of hydrogen brine. Pore
scale analysis was employed to predict the flow of hydrogen in storage formations but also to quantify the
sensitivity of the micro-scale characteristics of the contact angle and porosity of the rock structure. Then,
the sensitivity index was used for the individual impact of the parameters in the Forchheimer equation [9],
it systematically quantified the role played by the parameters and their impact on the value of the criterion.
Another study [10], uses the FLUENT software to model and perform a sensitivity analysis of the flow of
a fluid in a confined aquifer. It follows from this study that the fluid flow, the porosity and the permeability
of the aquifer, have a great impact on the pressure distribution in the reservoir. Reference [11] conducted a
sensitivity analysis and parameter identification study for the transport of colloids in porous media. It was
found that the model is very sensitive to the hydraulic parameters of the porous medium and to the transport
parameters. Morris's method was improved by [12] and used to study the sensitivity of the input parameters
of a porous flow model based on the Richards equation. Interesting results were obtained after cross-
validation by Sobol's variance-based method. It follows from the results of this study that the size of the
special discretization step is the main cause of the observed differences. Another study [13], uses sensitivity
analysis to study the uncertainties of the Richards equation in a heterogeneous, unsaturated porous medium.
This study uses an elementary sensitivity analysis which could be easily transformed into approximations
of the functional sensitivities into limit flux sensitivities. The results of the one-dimensional numerical
implementation were able to show compatibility with exact analytical solutions and with numerical
disturbance calculations. The sensitivity analysis of a coupled model of heat and mass transfer in porous
unsaturated media has been studied by [14]. They observe the influence of the phase conversion coefficient
on the output of the model. To do this, the authors consider the observed parameter as a variable, and the
derivative with respect to the variable gives the measure of the sensitivity. Thus, it follows that the phase
conversion coefficient has little influence on the model. For the search for globally optimized input
parameters, the uncertainty values used in the global sensitivity analysis based on the variance of the Sobol
method can be subjected to an inverse method. This was used by [15], for a model of soil water infiltration,
using a simple genetic algorithm to search for an optimized set of input parameters.

Using the global sensitivity analysis, based on the Sobol method, can produce a ranking of parameters
that can be useful in checking over-parametrization and equifinality [16]-[18]. In the field of hydrological
studies based on conceptual or uncoupled models, the use of the Sobol method is successful [16], [19]-[23].
A good quantification of the input parameters of a transport model in porous media is obtained using a
global sensitivity analysis based on Sobol indices [24]. With the adoption of a surrogate model to describe
the transport, the polynomial chaos expansion theory allows a reduction in the computational time needed
to predict the response of the system and is favorable to a good estimation of the Sobol indices [24]-[26].
Reference [26], uses a Markov Monte Carlo chain-based sampling method to estimate the hydraulic
parameters of a flow model in a porous medium. The results obtained are in agreement with the overall
sensitivity analysis study that was carried out.

In this work, we are interested in the study of the sensitivity analysis of the input parameters of a
multiphase flow model in porous media. This is a continuation of the work of [27], and [28] modeling
multiphase compressible flows in an oil reservoir. The studied model is a complex model. Taking into
account the criteria presented in [ 1], on the choice of the overall sensitivity analysis method, we have chosen
the Sobol method.

II. MATERIALS AND METHODS

A. Model Presentation

The studied model is the one defined in [27], [28] as mentioned in the introduction section. It is a model
describing multi-component multiphase flows with mass transfer between the oil and gas phases, in a
porous medium, the application of which was made for the Tsimiroro Madagascar oil field [27], [28], it
consists of the mass conservation equations for each component in each phase (water, oil and gas):
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It is a model of nonlinear partial differential equations, of which a finite volume scheme was used for the
discretization and an implicit Euler scheme was used for the temporal discretization [27], [28], which gave
the discretized system constituted by the system of (4):
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As we can notice, this system is nonlinear, and the authors of the works [27], [28], used a Newton
Raphson algorithm for the linearized one, which gave a linear system given by (5):

SXktl = —Rk (5)

In this equation, J* is the Jacobian matrix, at Newton's iteration k. §X**1 is the vector of change of
unknowns such that:5X**1 = x*+1 — x*
The Jacobean matrix is given by (6):
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The sub-matrices of the matrix (6), are given by:
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The Matlab computer code developed by [28], will be used in this work for the study of global sensitivity
analysis. Indeed, as stated in the introduction, this work is the extension of [27], [28].

B. Global Sensitivity Analysis: Method based on Analysis of Variance

Global sensitivity analysis based on variance is a method inspired by the work of Cukier [1] by Sobol
who generalized it to provide a simple tool based on Monte Carlo concept implementation, capable of
calculating measures of sensitivity for arbitrary groups of factors.

Consider an integrable square function f on Q¥ the unit hyper cube of dimensionk:

Qr=X0<x,<L;i=1,...k) 8)
Sobol considers an expansion of f in terms of increasing dimensions:
f=fotXifitXidjsifij+ -+ fiz. .k )

Where,
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fi = fi(X) (10)
fij = fij(Xi'Xj) (11)
And so on,

This decomposition method is called "high dimensional model representation (HDMR)" and is not
unique, which means that for a given model off, there could be endless choices for these terms. Sobol
proved that if each term in the expansion of (9) has zero mean, then all the terms of the decomposition are
orthogonal. Consequently, these terms can be computed unambiguously by using the conditional
expectations of the output of the model Y. These terms are computed by the relations (12) to (14):

fo=E() (12)
fi=EIX) —E(Y) (13)
fiy = E(Y[X0 X)) = fi = f; — EQY) (14)
The (15) describes the first order sensitivity index:

_ VEYIXD)]
5= (15)

It represents the contribution to the main effect of each input parameter to the output variance. By square

integrating the terms of the decomposition (9) on QF, we can obtain the decomposition of the variance
called ANOVA-HDMR:

V) = 2iVi+ X XjsiVij + -+ Vip (16)

Where V; =V (f); V;j = V(fi ]-), so on, are the associated variances. V;; is the joint effect between
X; and X; minus the first order effects for the same factors. By dividing (16) member by member by V(Y)
we obtain:

2iSit Xi2siSij+ XiXjsidusjSin ot Sips. =1 (17)

The number of terms in (17) increases exponentially with the number of input factors. The S;;, S;ji....,

ij>
are the effects of second order, third order and so on.

From (17), we can define the total effect of each parameter, which is the first order effect plus all higher
order effects. That is, for the parameter X;whose first order effect index is S;, its total effect will be defined

by:
Sri =S+ i 2j>iSij t i Zjsi2usjSiji o+ 8123,k (18)

This index represents the contribution of total to the production of variation due to the factor X;.
Decomposing the variance V(Y) in terms of the main and residual effect by conditioning all the factors
except one (X..;) we can calculate the total index:

_ EvXn g vIE(YIX )]

Sri V(Y) V(Y) (19)

C. Sensitivity Index Calculation Algorithm

The algorithm proposed in this work is inspired by the work of [1] and [31], and allows easy calculation
of the parametric sensitivity indices of the model using analysis based on variance. The algorithm is easy
to implement in Matlab. In this algorithm, k is the number of input parameters of the model.
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/ / N and k are the base sample and the number of input factors
// Given the maximum value and the minimum value for each factor F, a matrix of two columns
//and k rows: each rows of F contains the minimum value and the maximum value of ith factor,
//where i varies from 1 to k.
k « size(F,1);
// generate two (N,k) A and B matrix respectively of random numbers
A« [F(1,1) + (F(1,2) — F(1,1)).*rand(N,1),F(2,1) + (F(2,2) — F(2,1)).= rand(N, 1), ...,
F(k,1) + (F(k,2) — F(k,1)).* rand(N,1)] ;
// we use some equationwe used to calculate the A matrix but the two matrices are different
//because of the random values generated in rand
B« [F(1,1) + (F(1,2) — F(1,1)).# rand(N, 1), F(2,1) + (F(2,2) — F(2,1)).* rand(N, 1), ...,
F(k,1) + (F(k,2) — F(k,1)).* rand(N,1)] ;
// define a matrix C; formed by all columns of B except the ith column which is taken from A and
compute the model output for all the imput values of the sample matrices A, B and C;
fori «1toN
xa « A(i,:),// vector contains all input values for each i
// compute y, = f(xa)
va(i,:) « Model(xa);
// compute yg = f(xb)
// compute the matrix C; and y¢, = f(xci)
forje1ltok
xb « [B(i,1toj—1),A(i,j),B(i,j + 1 to N)]; v5(i,:,j) « Model(xb);
xci « [A(i,1toj—1),B(i,j), A(i,j + 1to N)]; v.:(i,:,j) « Model(xci);
end
end
// Compute of the variances
n & size(yy, 2); fo < zeros(1,n);V « zeros(1,n) ;
forie1toN
fo < fo+ya(i,:)/N;
VeV +y,(3,:).22/N;
end
VeV-f3;
// compute the partial variance for each parameter and the total partial variance
V; « ones(k,1) =V; V;; « zeros(k,n) ;
forie<1toN
forje1ltok
ViG,:) < ViGoo) — (vais) =y G, 0)). ~2/(2*N);
VejGot) Ve Gos) + (34 t) =y Gz, D). 22/(27N);
end
end
// compute the sensitivity index
S; « V;/ones(k,1)*V; // first order
ST; « V.;/ones(k, 1)*V; // total effect
// sort sensitivity ranking
[Si, 7] = sort(S;) ; [STi,r] = sort(S;)

Fig. 1. Algorithm for calculating sensitivity indices.

III. RESULTS AND DISCUSSIONS

Fig. 2 and 3, show the influence of the input parameters of the multi-component multiphase flow model
on the pressure and oil saturation output parameters. It can be seen from these results that the most
influential parameters on the pressure are the number of discretization according to each direction of the
field, the injection pressure, the dimensions of the reservoir, and the initial pressure of the reservoir, the
porosity, and the permeability of the porous medium. On the other hand, we can see that the imposed
production pressure and the simulation time have almost no effect on the output pressure of the model. This
observation agrees with the obtained results in [28], on the convergence of the model. Note that the
comparison of the first order sensitivity indices with the total indices, shows that almost every input
parameter of the model can interact with other input parameters of the model. Indeed, the difference S;; —
S;is a measure of how much the parameter X;is involved in interactions with any other parameter [1]. This
on the one hand explains the complexity of the model and therefore on the other hand imposes an
optimization of the model for the right choice of simulation parameters.
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Comparison of the most influent parameters of the oil reservoil model on the pressure output
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Fig. 2. First Order sensitivity index effect for the pressure output parameter.

Comparison of the most influent parameters of the oil reservoil model on the pressure output
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Fig. 3. Total sensitivity for the pressure output parameter.

Fig. 4 and 5 make it possible to carry out the same analysis as that made for Fig. 2 and 3. However, the
order of influence of the porous medium absolute permeability and porosity parameters is much greater on
the oil saturation output parameter than on the pressure output parameter. In fact, the porosity and the
absolute permeability characterize the porous medium and respectively describe the percentage of oil
contained in the porous medium relative to the total volume of the available porous medium and the capacity
of the porous medium to let the fluid flow in; hence the good choice of these parameters which are often
difficult to measure and / or estimate.
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Comparison of the most influent parameters of the oil reservoil model on the Oil saturation output
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Fig 4. First order index for oil saturation output parameter.

Comparison of the most influent parameters of the oil reservoil model on the Oil saturation output
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Fig. 5. Total sensitivity index for oil saturation output parameter.

IV. CONCLUSION

The work presented in this article consists of parametric sensitivity analysis of a multi-component
multiphase flow model in a porous geological medium. It was found that the input parameters of the model
can be in interaction with each other, but especially that most of them have a lot of influence on the pressure
and the oil saturation which are the observed output parameters. This means that the input parameters will
have a big impact on the production of the reservoir. The analysis shows that particularly the dimensions
of the reservoir and the injection pressure have a great influence on the two observed output parameters,
while the initial pressure of the reservoir has a great influence on oil saturation than on the pressure which
both are output parameters of the model. The porosity and the permeability of the porous medium have a
lot of influence on the oil saturation while for the outlet pressure, it is the porosity which is much more
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influential. These two parameters are stochastic parameters, of the porous medium, that are difficult to
measure or estimate with certainty.

For a better optimization of the production of the reservoir, this study allows us to draw the following
conclusions:

e The choice of reservoir dimensions and the location of the wells must be crucial,

e Estimate the initial pressure of the reservoir and the physical parameters such as porosity and

permeability,

e Adjust the injection pressure carefully for maximum production,

e As for the discretization, the choice of the discretization step is of capital importance despite the cost

in computing time.

To better understand the functioning of the model and improve the optimization, a lot of work remains
to be done, including the sensitivity analysis of the relative permeability models to see which model will
have a better impact, but also the study of capillary pressure models. It would also be interesting to examine
the case where the middle fractures are taken into account in the model.
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